IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v18y2019i02ns0219622019500068.html
   My bibliography  Save this article

Textual Sentiment of Chinese Microblog Toward the Stock Market

Author

Listed:
  • Ning Wang

    (Department of Information Management, School of Management, Shanghai University, No. 333, Nanchen Rd., Shanghai, China)

  • Shanhui Ke

    (Department of Information Management, School of Management, Shanghai University, No. 333, Nanchen Rd., Shanghai, China)

  • Yibo Chen

    (#x2020;Shanghai Liangyou Asset Management Company Limited, Shanghai, China)

  • Tao Yan

    (#x2021;Department of Management Science, School of Management, University of Science and Technology of China, China)

  • Andrew Lim

    (#xA7;Department of Industrial Systems Engineering, National University of Singapore, Singapore)

Abstract

In this paper, text mining and statistical models are deployed to explore the relationship between the Shanghai Stock Exchange Composite Index (SSECI) and the collective emotions of individual investors. The emotions of individual investors are quantified by extracting and aggregating investor online posts that contain finance-related keywords. To identify a set of finance-related keywords, three years of blogs from a famous financial blog site are segmented by an automatic text segmentation method; meanwhile, in the literature of social media, people typically select keywords manually. Posts that discuss the keywords are extracted out of all types of topics from Sina Weibo, the largest microblog platform in China. Statistical results reveal the relationship between daily posts and daily opening prices with a one-day lag, which indicates the existence of information (news) propagation lag. This study contributes to the existing literature by demonstrating that the microblog sentiment level reports can be quantitatively incorporated as a proxy to provide valuable support to portfolio decision making.

Suggested Citation

  • Ning Wang & Shanhui Ke & Yibo Chen & Tao Yan & Andrew Lim, 2019. "Textual Sentiment of Chinese Microblog Toward the Stock Market," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 649-671, March.
  • Handle: RePEc:wsi:ijitdm:v:18:y:2019:i:02:n:s0219622019500068
    DOI: 10.1142/S0219622019500068
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622019500068
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622019500068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran Yousaf & Shoaib Ali & Syed Zulfiqar Ali Shah, 2018. "Herding behavior in Ramadan and financial crises: the case of the Pakistani stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-14, December.
    2. Yuan Song & Hongwei Wang & Maoran Zhu, 2018. "Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-14, December.
    3. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    4. Lao, Jiashun & Nie, He & Jiang, Yonghong, 2018. "Revisiting the investor sentiment–stock returns relationship: A multi-scale perspective using wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 420-427.
    5. Minjian Ye & Guangzhong Li, 2017. "Internet big data and capital markets: a literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-18, December.
    6. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    7. Cao, Jie & Han, Bing & Wang, Qinghai, 2017. "Institutional Investment Constraints and Stock Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(2), pages 465-489, April.
    8. Xu, Hai-Chuan & Zhou, Wei-Xing, 2018. "A weekly sentiment index and the cross-section of stock returns," Finance Research Letters, Elsevier, vol. 27(C), pages 135-139.
    9. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    10. Maitra, Debasish & Dash, Saumya Ranjan, 2017. "Sentiment and stock market volatility revisited: A time–frequency domain approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 15(C), pages 74-91.
    11. Gao, Bin & Yang, Chunpeng, 2017. "Forecasting stock index futures returns with mixed-frequency sentiment," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 69-83.
    12. Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
    13. Apergis, Nicholas & Eleftheriou, Sophia, 2002. "Interest rates, inflation, and stock prices: the case of the Athens Stock Exchange," Journal of Policy Modeling, Elsevier, vol. 24(3), pages 231-236, June.
    14. You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
    15. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    16. Shuming Liu, 2015. "Investor Sentiment and Stock Market Liquidity," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 51-67, January.
    17. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    18. Sun, Andrew & Lachanski, Michael & Fabozzi, Frank J., 2016. "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 272-281.
    19. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Zola & Paulo Cortez & Costantino Ragno & Eugenio Brentari, 2019. "Social Media Cross-Source and Cross-Domain Sentiment Classification," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1469-1499, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Naeem, Muhammad Abubakr & Farid, Saqib & Faruk, Balli & Shahzad, Syed Jawad Hussain, 2020. "Can happiness predict future volatility in stock markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    4. Na, Haejung & Kim, Soonho, 2021. "Predicting stock prices based on informed traders’ activities using deep neural networks," Economics Letters, Elsevier, vol. 204(C).
    5. Dong, Hang & Gil-Bazo, Javier, 2020. "Sentiment stocks," International Review of Financial Analysis, Elsevier, vol. 72(C).
    6. Abakah, Emmanuel Joel Aikins & Abdullah, Mohammad & Yousaf, Imran & Kumar Tiwari, Aviral & Li, Yanshuang, 2024. "Economic sanctions sentiment and global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    7. Yao, Can-Zhong & Li, Hong-Yu, 2020. "Time-varying lead–lag structure between investor sentiment and stock market," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Xiong Xiong & Chunchun Luo & Ye Zhang & Shen Lin, 2019. "Do stock bulletin board systems (BBS) contain useful information? A viewpoint of interaction between BBS quality and predicting ability," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1385-1411, March.
    9. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    10. Sakariyahu, Rilwan & Johan, Sofia & Lawal, Rodiat & Paterson, Audrey & Chatzivgeri, Eleni, 2023. "Dynamic connectedness between investors’ sentiment and asset prices: A comparison between major markets in Europe and USA," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    11. An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
    12. Labidi, Chiraz & Yaakoubi, Soumaya, 2016. "Investor sentiment and aggregate volatility pricing," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 53-63.
    13. Li, Yan & Li, Weiping, 2021. "Firm-specific investor sentiment for the Chinese stock market," Economic Modelling, Elsevier, vol. 97(C), pages 231-246.
    14. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 10, July-Dece.
    15. Takanori Hisada, 2018. "The Effect of Investor Sentiment toward an Exchange Merger on Liquidity," International Journal of Economics and Financial Issues, Econjournals, vol. 8(2), pages 315-318.
    16. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2019. "Firm-specific investor sentiment and the stock market response to earnings news," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 221-240.
    17. Xiong, Xiong & Meng, Yongqiang & Joseph, Nathan Lael & Shen, Dehua, 2020. "Stock mispricing, hard-to-value stocks and the influence of internet stock message boards," International Review of Financial Analysis, Elsevier, vol. 72(C).
    18. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
    19. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
    20. Kiran Thapa, 2013. "Stock Message Board Recommendations and Share Trading Activity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2013, January-A.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:18:y:2019:i:02:n:s0219622019500068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.