Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.irfa.2016.10.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
- Felix Ming Fai Wong & Zhenming Liu & Mung Chiang, 2014. "Stock Market Prediction from WSJ: Text Mining via Sparse Matrix Factorization," Papers 1406.7330, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
- Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 09, European Central Bank.
- Duan, Jiaxin & Kou, Fangyuan & Wang, Zining & Wei, Yixin, 2024. "When echoes surpass voices: Market reaction to forwarded news," International Review of Financial Analysis, Elsevier, vol. 96(PA).
- Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
- Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
- Nadine Gatzert & Dinah Heidinger, 2020. "An Empirical Analysis of Market Reactions to the First Solvency and Financial Condition Reports in the European Insurance Industry," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 407-436, June.
- Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2018. "Separating the signal from the noise - financial machine learning for Twitter," FAU Discussion Papers in Economics 14/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Mao, Huina & Counts, Scott & Bollen, Johan, 2015. "Quantifying the effects of online bullishness on international financial markets," Statistics Paper Series 9, European Central Bank.
- Yekini, Liafisu Sina & Wisniewski, Tomasz Piotr & Millo, Yuval, 2016. "Market reaction to the positiveness of annual report narratives," The British Accounting Review, Elsevier, vol. 48(4), pages 415-430.
- Stefan Feuerriegel & Nicolas Prollochs, 2018. "Investor Reaction to Financial Disclosures Across Topics: An Application of Latent Dirichlet Allocation," Papers 1805.03308, arXiv.org.
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
- Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2016. "Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-14, January.
- Barakat, Ahmed & Ashby, Simon & Fenn, Paul & Bryce, Cormac, 2019. "Operational risk and reputation in financial institutions: Does media tone make a difference?," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 1-24.
- Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
- Eryka Probierz & Adam Galuszka & Katarzyna Klimczak & Karol Jedrasiak & Tomasz Wisniewski & Tomasz Dzida, 2021. "Financial Sentiment on Twitter's Community and it's Connection to Polish Stock Market Movements in Context of Behavior Modelling," European Research Studies Journal, European Research Studies Journal, vol. 0(4 - Part ), pages 56-65.
- Leilane de Freitas Rocha Cambara & Roberto Meurer, 2023. "News sentiment and foreign portfolio investment in Brazil," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3332-3348, July.
- repec:hal:spmain:info:hdl:2441/3mgbd73vkp9f9oje7utooe7vpg is not listed on IDEAS
- Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
More about this item
Keywords
Tweets; Social media text mining; Sparse matrix factorization; Stock market prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:48:y:2016:i:c:p:272-281. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.