Effect of climate change on field crop production in California’s Central Valley
Author
Abstract
Suggested Citation
DOI: 10.1007/s10584-011-0305-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Moen, Thomas N. & Kaiser, Harry M. & Riha, Susan J., 1994. "Regional yield estimation using a crop simulation model: Concepts, methods, and validation," Agricultural Systems, Elsevier, vol. 46(1), pages 79-92.
- Stehfest, Elke & Heistermann, Maik & Priess, Joerg A. & Ojima, Dennis S. & Alcamo, Joseph, 2007. "Simulation of global crop production with the ecosystem model DayCent," Ecological Modelling, Elsevier, vol. 209(2), pages 203-219.
- Wilks, D. S. & Pitt, R. E. & Fick, G. W., 1993. "Modeling optimal alfalfa harvest scheduling using short-range weather forecasts," Agricultural Systems, Elsevier, vol. 42(3), pages 277-305.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Schenker, Oliver & Stephan, Gunter, 2012. "Terms-of-trade and the funding of adaptation to climate change and variability: An empirical analysis," ZEW Discussion Papers 12-056, ZEW - Leibniz Centre for European Economic Research.
- Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.
- Rakotoarimanana Zy Harifidy & Rakotoarimanana Zy Misa Harivelo & Ishidaira Hiroshi & Magome Jun & Souma Kazuyoshi, 2022. "A Systematic Review of Water Resources Assessment at a Large River Basin Scale: Case of the Major River Basins in Madagascar," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
- Amber Kerr & Jake Dialesandro & Kerri Steenwerth & Nathan Lopez-Brody & Emile Elias, 2018. "Vulnerability of California specialty crops to projected mid-century temperature changes," Climatic Change, Springer, vol. 148(3), pages 419-436, June.
- Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
- Mehta, Vishal K. & Haden, Van R. & Joyce, Brian A. & Purkey, David R. & Jackson, Louise E., 2013. "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California," Agricultural Water Management, Elsevier, vol. 117(C), pages 70-82.
- Kishore, Siddharth & Nemati, Mehdi & Dinar, Ariel & Struthers, Cory & MacKenzie, Scott A. & Shugart, Matthew S., 2024. "The Impact of Dust Exposure on Farmland Market: Evidence from the California’s Central Valley," 2024 Annual Meeting, July 28-30, New Orleans, LA 343546, Agricultural and Applied Economics Association.
- Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
- Arisha Ashraf & Ariel Dinar & Érika Monteiro & Todd Gaston, 2016. "Adaptation In California Agriculture: What Have We Been Assessing For Two And A Half Decades?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-19, May.
- Schenker, Oliver & Stephan, Gunter, 2014. "Give and take: How the funding of adaptation to climate change can improve the donor's terms-of-trade," Ecological Economics, Elsevier, vol. 106(C), pages 44-55.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
- Ortiz-Bobea, Ariel & Kim, Do-Hyung & Chen, Yanyou, "undated". "Identifying climatic constraints of US agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170674, Agricultural and Applied Economics Association.
- Yane Freitas Silva & Rafael Vasconcelos Valadares & Henrique Boriolo Dias & Santiago Vianna Cuadra & Eleanor E. Campbell & Rubens A. C. Lamparelli & Edemar Moro & Rafael Battisti & Marcelo R. Alves & , 2022. "Intense Pasture Management in Brazil in an Integrated Crop-Livestock System Simulated by the DayCent Model," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
- Muntwyler, Anna & Panagos, Panos & Morari, Francesco & Berti, Antonio & Jarosch, Klaus A. & Mayer, Jochen & Lugato, Emanuele, 2023. "Modelling phosphorus dynamics in four European long-term experiments," Agricultural Systems, Elsevier, vol. 206(C).
- Nocentini, Andrea & Monti, Andrea, 2019. "Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations," Agricultural Systems, Elsevier, vol. 173(C), pages 209-217.
- Roberts, David C. & Brorsen, B. Wade & Solie, John B. & Raun, William R., 2011. "The effect of parameter uncertainty on whole-field nitrogen recommendations from nitrogen-rich strips and ramped strips in winter wheat," Agricultural Systems, Elsevier, vol. 104(4), pages 307-314, April.
- Abdul Rehman & Luan Jingdong, 2017. "An econometric analysis of major Chinese food crops: An empirical study," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1323372-132, January.
- Dzotsi, K.A. & Basso, B. & Jones, J.W., 2013. "Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT," Ecological Modelling, Elsevier, vol. 260(C), pages 62-76.
- Dzotsi, K.A. & Basso, B. & Jones, J.W., 2015. "Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model," Agricultural Systems, Elsevier, vol. 135(C), pages 31-47.
- Gallagher, Nicholas James, 2024. "Dynamic Programming Methods for Characterizing In-Season Farm Management Decisions," Dissertations and Theses 344827, Ekiti State University, Ado-Ekiti, Department of Agricultural Economics and Extension Services.
- Zijuan Zhu & Zengxiang Zhang & Xiaoli Zhao & Lijun Zuo & Xiao Wang, 2022. "Characteristics of Land Use Change in China before and after 2000," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
- Menas C. Kafatos & Seung Hee Kim & Chul-Hee Lim & Jinwon Kim & Woo-Kyun Lee, 2017. "Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
- Prem S. Bindraban & Rudy Rabbinge, 2011. "European food and agricultural strategy for 21st century," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 9(1/2), pages 80-101.
- Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
- Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
- Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
- Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
- Peckett, Frances J. & Glegg, Gillian A. & Rodwell, Lynda D., 2014. "Assessing the quality of data required to identify effective marine protected areas," Marine Policy, Elsevier, vol. 45(C), pages 333-341.
- Hongdan Li & Wenjiao Shi & Bing Wang & Tingting An & Shuang Li & Shuangyi Li & Jingkuan Wang, 2017. "Comparison of the modeled potential yield versus the actual yield of maize in Northeast China and the implications for national food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 99-114, February.
- Warut Pannakkong & Parthana Parthanadee & Jirachai Buddhakulsomsiri, 2022. "Impacts of Harvesting Age and Pricing Schemes on Economic Sustainability of Cassava Farmers in Thailand under Market Uncertainty," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:109:y:2011:i:1:p:335-353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.