IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v5y2002i3p180-193.html
   My bibliography  Save this article

Process integration using the design structure matrix

Author

Listed:
  • Tyson R. Browning

Abstract

A process, as a kind of system, derives its added value from the relationships among its elements (e.g., activities). For a group of activities to be truly integrated (versus merely aggregated), the flow of deliverables among them must be well defined, agreed to, and committed to. Engineering processes are especially complex because of the large number of interdependencies among the activities, as many types of information flow to many destinations. A process model of what actually flows must be extracted from the existing, implicit way work really gets done. Since this requires getting “close” to where work is actually done, it is beyond the ability of a single, centralized group to build the entire model. Instead, a number of process “puzzle pieces” must be integrated into a single process model that will have more holistic descriptive, analytical, and prescriptive value. (The systems engineering “V” model applies to processes as well as to products.) This paper applies a powerful technique for representing and analyzing complex processes, the design structure matrix (DSM). The paper shows how to use the DSM to display both internal and external inputs and outputs, thereby defining the “edges” of the process puzzle pieces so they can be assembled to form large, integrated processes where value can flow. Process definition and integration is akin to “mapping the genome” of how work is efficiently and effectively accomplished across disciplines and organizations. It is an important enabler of process understanding and improvement. © 2002 Wiley Periodicals, Inc. Syst Eng 5: 180–193, 2002

Suggested Citation

  • Tyson R. Browning, 2002. "Process integration using the design structure matrix," Systems Engineering, John Wiley & Sons, vol. 5(3), pages 180-193.
  • Handle: RePEc:wly:syseng:v:5:y:2002:i:3:p:180-193
    DOI: 10.1002/sys.10023
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.10023
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.10023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elmaghraby, Salah E., 1995. "Activity nets: A guided tour through some recent developments," European Journal of Operational Research, Elsevier, vol. 82(3), pages 383-408, May.
    2. Bernard W. Taylor, III & Laurence J. Moore, 1980. "R&D Project Planning with Q-GERT Network Modeling and Simulation," Management Science, INFORMS, vol. 26(1), pages 44-59, January.
    3. Lorraine Pajerek, 2000. "Processes and organizations as systems: when the processors are people, not pentiums," Systems Engineering, John Wiley & Sons, vol. 3(2), pages 103-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah M. Bonzo & David McLain & Mark S. Avnet, 2016. "Process Modeling in the Operating Room: A Socio‐Technical Systems Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 267-277, May.
    2. Yu-Jie Zheng & Yu Yang & Na Zhang & Yao Jiao, 2016. "A Supernetwork-Based Model for Design Processes of Complex Mechanical Products," Sustainability, MDPI, vol. 8(10), pages 1-25, October.
    3. Holly A. H. Handley & Alexander H. Levis, 2003. "Organizational architectures and mission requirements: A model to determine congruence," Systems Engineering, John Wiley & Sons, vol. 6(3), pages 184-194.
    4. Pedro Parraguez & Steven Eppinger & Anja Maier, 2016. "Characterizing Design Process Interfaces as Organization Networks: Insights for Engineering Systems Management," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 158-173, March.
    5. David M. Sharman & Ali A. Yassine, 2004. "Characterizing complex product architectures," Systems Engineering, John Wiley & Sons, vol. 7(1), pages 35-60.
    6. Durugbo, Christopher & Tiwari, Ashutosh & Alcock, Jeffrey R., 2013. "Modelling information flow for organisations: A review of approaches and future challenges," International Journal of Information Management, Elsevier, vol. 33(3), pages 597-610.
    7. Eun Suk Suh & Michael R. Furst & Kenneth J. Mihalyov & Olivier de Weck, 2010. "Technology infusion for complex systems: A framework and case study," Systems Engineering, John Wiley & Sons, vol. 13(2), pages 186-203, June.
    8. Tyson R. Browning & Ernst Fricke & Herbert Negele, 2006. "Key concepts in modeling product development processes," Systems Engineering, John Wiley & Sons, vol. 9(2), pages 104-128, June.
    9. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. M. D. Guenov & S. G. Barker, 2005. "Application of axiomatic design and design structure matrix to the decomposition of engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(1), pages 29-40.
    11. Bahram Hamraz & Nicholas H. M. Caldwell & P. John Clarkson, 2013. "A Holistic Categorization Framework for Literature on Engineering Change Management," Systems Engineering, John Wiley & Sons, vol. 16(4), pages 473-505, December.
    12. Rudolf Smaling & Olivier de Weck, 2007. "Assessing risks and opportunities of technology infusion in system design," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 1-25, March.
    13. Ali A. Yassine & Luke A. Wissmann, 2007. "The Implications of Product Architecture on the Firm," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 118-137, June.
    14. Tyson R. Browning, 2003. "On customer value and improvement in product development processes," Systems Engineering, John Wiley & Sons, vol. 6(1), pages 49-61.
    15. Brian M. Kennedy & Durward K. Sobek & Michael N. Kennedy, 2014. "Reducing Rework by Applying Set‐Based Practices Early in the Systems Engineering Process," Systems Engineering, John Wiley & Sons, vol. 17(3), pages 278-296, September.
    16. Young‐Don Shin & Sang‐Hyun Sim & Jae‐Chon Lee, 2017. "Model‐Based Integration of Test and Evaluation Process and System Safety Process for Development of Safety‐Critical Weapon Systems," Systems Engineering, John Wiley & Sons, vol. 20(3), pages 257-279, May.
    17. Eckert, Claudia M. & Keller, René & Earl, Chris & Clarkson, P. John, 2006. "Supporting change processes in design: Complexity, prediction and reliability," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1521-1534.
    18. Jason E. Bartolomei & Daniel E. Hastings & Richard de Neufville & Donna H. Rhodes, 2012. "Engineering Systems Multiple‐Domain Matrix: An organizing framework for modeling large‐scale complex systems," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 41-61, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyson R. Browning & Ernst Fricke & Herbert Negele, 2006. "Key concepts in modeling product development processes," Systems Engineering, John Wiley & Sons, vol. 9(2), pages 104-128, June.
    2. Mobin, Mohammadsadegh & Li, Zhaojun & Cheraghi, S. Hossein & Wu, Gongyu, 2019. "An approach for design Verification and Validation planning and optimization for new product reliability improvement," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    3. Drexl, Andreas & Kimms, Alf, 1998. "Minimizing total weighted completion times subject to precedence constraints by dynamic programming," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 475, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Grzegorz Waligóra, 2014. "Discrete-continuous project scheduling with discounted cash inflows and various payment models—a review of recent results," Annals of Operations Research, Springer, vol. 213(1), pages 319-340, February.
    5. Dodin, B. & Elimam, A.A., 2008. "Integration of equipment planning and project scheduling," European Journal of Operational Research, Elsevier, vol. 184(3), pages 962-980, February.
    6. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
    7. Joshua B. Levy & Giri Kumar Tayi, 1989. "Analysis of project scheduling strategies in a client‐contractor environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(1), pages 69-87, February.
    8. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    9. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    10. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    11. Masoud Arjmand & Amir Abbas Najafi & Majid Ebrahimzadeh, 2020. "Evolutionary algorithms for multi-objective stochastic resource availability cost problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 935-985, September.
    12. Maroño, M. & Peña, J.A. & Santamaría, J., 2006. "The ‘PROCESO’ index: a new methodology for the evaluation of operational safety in the chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 349-361.
    13. Tyson R. Browning, 2009. "The many views of a process: Toward a process architecture framework for product development processes," Systems Engineering, John Wiley & Sons, vol. 12(1), pages 69-90, March.
    14. Tavares, L. Valadares & Antunes Ferreira, J. A. & Silva Coelho, J., 1998. "On the optimal management of project risk," European Journal of Operational Research, Elsevier, vol. 107(2), pages 451-469, June.
    15. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    16. Mashood Ishaque & Abbas K. Zaidi & Alexander H. Levis, 2009. "Project management using point graphs," Systems Engineering, John Wiley & Sons, vol. 12(1), pages 36-54, March.
    17. Michael T. Pich & Christoph H. Loch & Arnoud De Meyer, 2002. "On Uncertainty, Ambiguity, and Complexity in Project Management," Management Science, INFORMS, vol. 48(8), pages 1008-1023, August.
    18. Yang, Hsu-Hao & Chen, Yen-Liang, 2000. "Finding the critical path in an activity network with time-switch constraints," European Journal of Operational Research, Elsevier, vol. 120(3), pages 603-613, February.
    19. Pedro Parraguez & Steven Eppinger & Anja Maier, 2016. "Characterizing Design Process Interfaces as Organization Networks: Insights for Engineering Systems Management," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 158-173, March.
    20. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:5:y:2002:i:3:p:180-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.