IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020is1p2144-2177.html
   My bibliography  Save this article

Answerable and Unanswerable Questions in Risk Analysis with Open‐World Novelty

Author

Listed:
  • Louis Anthony Cox

Abstract

Decision analysis and risk analysis have grown up around a set of organizing questions: what might go wrong, how likely is it to do so, how bad might the consequences be, what should be done to maximize expected utility and minimize expected loss or regret, and how large are the remaining risks? In probabilistic causal models capable of representing unpredictable and novel events, probabilities for what will happen, and even what is possible, cannot necessarily be determined in advance. Standard decision and risk analysis questions become inherently unanswerable (“undecidable”) for realistically complex causal systems with “open‐world” uncertainties about what exists, what can happen, what other agents know, and how they will act. Recent artificial intelligence (AI) techniques enable agents (e.g., robots, drone swarms, and automatic controllers) to learn, plan, and act effectively despite open‐world uncertainties in a host of practical applications, from robotics and autonomous vehicles to industrial engineering, transportation and logistics automation, and industrial process control. This article offers an AI/machine learning perspective on recent ideas for making decision and risk analysis (even) more useful. It reviews undecidability results and recent principles and methods for enabling intelligent agents to learn what works and how to complete useful tasks, adjust plans as needed, and achieve multiple goals safely and reasonably efficiently when possible, despite open‐world uncertainties and unpredictable events. In the near future, these principles could contribute to the formulation and effective implementation of more effective plans and policies in business, regulation, and public policy, as well as in engineering, disaster management, and military and civil defense operations. They can extend traditional decision and risk analysis to deal more successfully with open‐world novelty and unpredictable events in large‐scale real‐world planning, policymaking, and risk management.

Suggested Citation

  • Louis Anthony Cox, 2020. "Answerable and Unanswerable Questions in Risk Analysis with Open‐World Novelty," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2144-2177, November.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:s1:p:2144-2177
    DOI: 10.1111/risa.13553
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13553
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Rasouli, Mohammad & Saghafian, Soroush, 2018. "Robust Partially Observable Markov Decision Processes," Working Paper Series rwp18-027, Harvard University, John F. Kennedy School of Government.
    3. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    5. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    6. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    7. Lan Huong Nguyen & Susan Holmes, 2019. "Ten quick tips for effective dimensionality reduction," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-19, June.
    8. Kurt Marti, 1997. "Solving stochastic structural optimization problems by RSM-based stochastic approximation methods — gradient estimation in case of intermediate variables," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 409-434, October.
    9. repec:trn:utwpas:1211 is not listed on IDEAS
    10. Daniel S. Bernstein & Robert Givan & Neil Immerman & Shlomo Zilberstein, 2002. "The Complexity of Decentralized Control of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 819-840, November.
    11. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    12. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    13. Prasad, Kislaya, 1991. "Computability and randomness of Nash equilibrium in infinite games," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 429-442.
    14. Niklas Pfister & Peter Bühlmann & Jonas Peters, 2019. "Invariant Causal Prediction for Sequential Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1264-1276, July.
    15. Patrick Grim, 1997. "The undecidability of the spatialized prisoner's dilemma," Theory and Decision, Springer, vol. 42(1), pages 53-80, January.
    16. N. Sofronidis, 2004. "Undecidability of the existence of pure Nash equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 423-428, January.
    17. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    3. Lam, Chiou-Peng & Masek, Martin & Kelly, Luke & Papasimeon, Michael & Benke, Lyndon, 2019. "A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    5. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    7. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    8. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    9. Guo, Xianping & Ye, Liuer & Yin, George, 2012. "A mean–variance optimization problem for discounted Markov decision processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 423-429.
    10. Tom McLeod Logan & Terje Aven & Seth David Guikema & Roger Flage, 2022. "Risk science offers an integrated approach to resilience," Nature Sustainability, Nature, vol. 5(9), pages 741-748, September.
    11. Mohamed Hussein & Abdelrahman E. E. Eltoukhy & Amos Darko & Amr Eltawil, 2021. "Simulation-Optimization for the Planning of Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence Metaheuristics," Sustainability, MDPI, vol. 13(24), pages 1-41, December.
    12. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
    13. Prasad, Kislaya, 2009. "The rationality/computability trade-off in finite games," Journal of Economic Behavior & Organization, Elsevier, vol. 69(1), pages 17-26, January.
    14. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    15. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    16. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    17. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    18. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    19. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    20. Chris Fields & James F. Glazebrook, 2024. "Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective," Games, MDPI, vol. 15(5), pages 1-22, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:s1:p:2144-2177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.