IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i8p1488-1502.html
   My bibliography  Save this article

A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension

Author

Listed:
  • Siming You
  • Man Pun Wan

Abstract

A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow‐induced particle resuspension [AIPR] and walking‐induced particle resuspension [WIPR]) were derived based on two‐compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose‐response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0–0.5 hours and from 0.54 to 0.57 during 0.5–4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0–0.5 hours and from 0.87 to 1 during 0.5–4 hours. Sensitivity analysis was conducted based on the design‐of‐experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.

Suggested Citation

  • Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:8:p:1488-1502
    DOI: 10.1111/risa.12350
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12350
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachael M. Jones & Elodie Adida, 2011. "Influenza Infection Risk and Predominate Exposure Route: Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1622-1631, October.
    2. Mark Nicas & Rachael M. Jones, 2009. "Relative Contributions of Four Exposure Pathways to Influenza Infection Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1292-1303, September.
    3. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
    4. Mark Nicas & Gang Sun, 2006. "An Integrated Model of Infection Risk in a Health‐Care Environment," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 1085-1096, August.
    5. T. W. Armstrong & C. N. Haas, 2007. "A Quantitative Microbial Risk Assessment Model for Legionnaires' Disease: Animal Model Selection and Dose‐Response Modeling," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1581-1596, December.
    6. Rachael M. Jones & Yoshifumi Masago & Timothy Bartrand & Charles N. Haas & Mark Nicas & Joan B. Rose, 2009. "Characterizing the Risk of Infection from Mycobacterium tuberculosis in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 355-365, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
    2. Rachael M. Jones & Yulin Xia, 2018. "Annual Burden of Occupationally‐Acquired Influenza Infections in Hospitals and Emergency Departments in the United States," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 442-453, March.
    3. Edward M. Fisher & John D. Noti & William G. Lindsley & Francoise M. Blachere & Ronald E. Shaffer, 2014. "Validation and Application of Models to Predict Facemask Influenza Contamination in Healthcare Settings," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1423-1434, August.
    4. Nan Zhang & Yuguo Li, 2018. "Transmission of Influenza A in a Student Office Based on Realistic Person-to-Person Contact and Surface Touch Behaviour," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    5. Gin Nam Sze‐To & Christopher Y. H. Chao, 2011. "Use of Risk Assessment and Likelihood Estimation to Analyze Spatial Distribution Pattern of Respiratory Infection Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 351-369, March.
    6. Rachael M. Jones & Elodie Adida, 2011. "Influenza Infection Risk and Predominate Exposure Route: Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1622-1631, October.
    7. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    8. Gin Nam Sze‐To & Yang Yang & Joseph K. C. Kwan & Samuel C. T. Yu & Christopher Y. H. Chao, 2014. "Effects of Surface Material, Ventilation, and Human Behavior on Indirect Contact Transmission Risk of Respiratory Infection," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 818-830, May.
    9. Domhnall Melly & Emmet McLoughlin & Kelly Maguire, 2023. "Emerging Venue Considerations for Event Management: The Case of Ireland," Tourism and Hospitality, MDPI, vol. 4(1), pages 1-15, March.
    10. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    11. Toru Watanabe & Timothy A. Bartrand & Mark H. Weir & Tatsuo Omura & Charles N. Haas, 2010. "Development of a Dose‐Response Model for SARS Coronavirus," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1129-1138, July.
    12. Agung Kusumawardhana & Ljiljana Zlatanovic & Arne Bosch & Jan Peter van der Hoek, 2021. "Microbiological Health Risk Assessment of Water Conservation Strategies: A Case Study in Amsterdam," IJERPH, MDPI, vol. 18(5), pages 1-17, March.
    13. Yuke Wang & Christine L. Moe & Peter F. M. Teunis, 2018. "Children Are Exposed to Fecal Contamination via Multiple Interconnected Pathways: A Network Model for Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2478-2496, November.
    14. Mark Nicas & Rachael M. Jones, 2009. "Relative Contributions of Four Exposure Pathways to Influenza Infection Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1292-1303, September.
    15. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    16. Nicole C. J. Brienen & Aura Timen & Jacco Wallinga & Jim E. Van Steenbergen & Peter F. M. Teunis, 2010. "The Effect of Mask Use on the Spread of Influenza During a Pandemic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1210-1218, August.
    17. Bidya Prasad & Kerry A. Hamilton & Charles N. Haas, 2017. "Incorporating Time‐Dose‐Response into Legionella Outbreak Models," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 291-304, February.
    18. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    19. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    20. Szu‐Chieh Chen & Chung‐Min Liao & Sih‐Syuan Li & Shu‐Han You, 2011. "A Probabilistic Transmission Model to Assess Infection Risk from Mycobacterium Tuberculosis in Commercial Passenger Trains," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 930-939, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:8:p:1488-1502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.