IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v29y2009i3p355-365.html
   My bibliography  Save this article

Characterizing the Risk of Infection from Mycobacterium tuberculosis in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment

Author

Listed:
  • Rachael M. Jones
  • Yoshifumi Masago
  • Timothy Bartrand
  • Charles N. Haas
  • Mark Nicas
  • Joan B. Rose

Abstract

Quantitative microbial risk assessment was used to predict the likelihood and spatial organization of Mycobacterium tuberculosis (Mtb) transmission in a commercial aircraft. Passenger exposure was predicted via a multizone Markov model in four scenarios: seated or moving infectious passengers and with or without filtration of recirculated cabin air. The traditional exponential (k = 1) and a new exponential (k = 0.0218) dose‐response function were used to compute infection risk. Emission variability was included by Monte Carlo simulation. Infection risks were higher nearer and aft of the source; steady state airborne concentration levels were not attained. Expected incidence was low to moderate, with the central 95% ranging from 10−6 to 10−1 per 169 passengers in the four scenarios. Emission rates used were low compared to measurements from active TB patients in wards, thus a “superspreader” emitting 44 quanta/h could produce 6.2 cases or more under these scenarios. Use of respiratory protection by the infectious source and/or susceptible passengers reduced infection incidence up to one order of magnitude.

Suggested Citation

  • Rachael M. Jones & Yoshifumi Masago & Timothy Bartrand & Charles N. Haas & Mark Nicas & Joan B. Rose, 2009. "Characterizing the Risk of Infection from Mycobacterium tuberculosis in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 355-365, March.
  • Handle: RePEc:wly:riskan:v:29:y:2009:i:3:p:355-365
    DOI: 10.1111/j.1539-6924.2008.01161.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01161.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01161.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Nicas, 1996. "An Analytical Framework for Relating Dose, Risk, and Incidence: An Application to Occupational Tuberculosis Infection," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 527-538, August.
    2. Gwangpyo Ko & Kimberly M. Thompson & Edward A. Nardell, 2004. "Estimation of Tuberculosis Risk on a Commercial Airliner," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 379-388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gin Nam Sze‐To & Christopher Y. H. Chao, 2011. "Use of Risk Assessment and Likelihood Estimation to Analyze Spatial Distribution Pattern of Respiratory Infection Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 351-369, March.
    2. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    3. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    4. Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
    5. Szu‐Chieh Chen & Chung‐Min Liao & Sih‐Syuan Li & Shu‐Han You, 2011. "A Probabilistic Transmission Model to Assess Infection Risk from Mycobacterium Tuberculosis in Commercial Passenger Trains," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 930-939, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szu‐Chieh Chen & Chung‐Min Liao & Sih‐Syuan Li & Shu‐Han You, 2011. "A Probabilistic Transmission Model to Assess Infection Risk from Mycobacterium Tuberculosis in Commercial Passenger Trains," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 930-939, June.
    2. Charles N. Haas, 2002. "On the Risk of Mortality to Primates Exposed to Anthrax Spores," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 189-193, April.
    3. Ralf R. Küsel & Ian K. Craig & Anton C. Stoltz, 2019. "Modeling the Airborne Infection Risk of Tuberculosis for a Research Facility in eMalahleni, South Africa," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 630-646, March.
    4. Mark Nicas & Edmund Seto, 1997. "A Simulation Model for Occupational Tuberculosis Transmission," Risk Analysis, John Wiley & Sons, vol. 17(5), pages 609-616, October.
    5. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    6. Qi Zhen & Anxiao Zhang & Qiong Huang & Jing Li & Yiming Du & Qi Zhang, 2022. "Overview of the Role of Spatial Factors in Indoor SARS-CoV-2 Transmission: A Space-Based Framework for Assessing the Multi-Route Infection Risk," IJERPH, MDPI, vol. 19(17), pages 1-38, September.
    7. Chung‐Min Liao & Chao‐Fang Chang & Huang‐Min Liang, 2005. "A Probabilistic Transmission Dynamic Model to Assess Indoor Airborne Infection Risks," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1097-1107, October.
    8. Martín López‐García & Marco‐Felipe King & Catherine J. Noakes, 2019. "A Multicompartment SIS Stochastic Model with Zonal Ventilation for the Spread of Nosocomial Infections: Detection, Outbreak Management, and Infection Control," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1825-1842, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:29:y:2009:i:3:p:355-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.