IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6865d10.1038_414751a.html
   My bibliography  Save this article

Imperfect vaccines and the evolution of pathogen virulence

Author

Listed:
  • Sylvain Gandon

    (Institute of Cell, Animal and Population Biology, The University of Edinburgh)

  • Margaret J. Mackinnon

    (Institute of Cell, Animal and Population Biology, The University of Edinburgh)

  • Sean Nee

    (Institute of Cell, Animal and Population Biology, The University of Edinburgh)

  • Andrew F. Read

    (Institute of Cell, Animal and Population Biology, The University of Edinburgh)

Abstract

Vaccines rarely provide full protection from disease. Nevertheless, partially effective (imperfect) vaccines may be used to protect both individuals and whole populations1,2,3. We studied the potential impact of different types of imperfect vaccines on the evolution of pathogen virulence (induced host mortality) and the consequences for public health. Here we show that vaccines designed to reduce pathogen growth rate and/or toxicity diminish selection against virulent pathogens. The subsequent evolution leads to higher levels of intrinsic virulence and hence to more severe disease in unvaccinated individuals. This evolution can erode any population-wide benefits such that overall mortality rates are unaffected, or even increase, with the level of vaccination coverage. In contrast, infection-blocking vaccines induce no such effects, and can even select for lower virulence. These findings have policy implications for the development and use of vaccines that are not expected to provide full immunity, such as candidate vaccines for malaria4.

Suggested Citation

  • Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6865:d:10.1038_414751a
    DOI: 10.1038/414751a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/414751a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/414751a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaeta, Giuseppe, 2022. "Mass vaccination in a roaring pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    3. Wang, Lianwen & Liu, Zhijun & Zhang, Xingan, 2016. "Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 47-65.
    4. Reza Yaesoubi & Shiying You & Qin Xi & Nicolas A. Menzies & Ashleigh Tuite & Yonatan H. Grad & Joshua A. Salomon, 2023. "Generating simple classification rules to predict local surges in COVID-19 hospitalizations," Health Care Management Science, Springer, vol. 26(2), pages 301-312, June.
    5. Peng, Xiao-Long & Li, Chun-Yan & Qi, Hong & Sun, Gui-Quan & Wang, Zhen & Wu, Yong-Ping, 2022. "Competition between awareness and epidemic spreading in homogeneous networks with demography," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    6. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    7. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    8. Alizon, Samuel & van Baalen, Minus, 2008. "Transmission–virulence trade-offs in vector-borne diseases," Theoretical Population Biology, Elsevier, vol. 74(1), pages 6-15.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6865:d:10.1038_414751a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.