IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i1p161-176.html
   My bibliography  Save this article

Exposures from Chrysotile‐Containing Joint Compound: Evaluation of New Model Relating Respirable Dust to Fiber Concentrations

Author

Listed:
  • G. P. Brorby
  • P. J. Sheehan
  • D. W. Berman
  • K. T. Bogen
  • S. E. Holm

Abstract

The potential for fiber exposure during historical use of chrysotile‐containing joint compounds (JCC) has been documented, but the published data are of limited use for reconstructing exposures and assessing worker risk. Consequently, fiber concentration distributions for workers sanding JCC were independently derived by applying a recently developed model based on published dust measurements from sanding modern‐day (asbestos‐free) joint compound and compared to fiber concentration distributions based on limited historical measurements. This new procedure relies on factors that account for (i) differences in emission rates between modern‐day and JCC and (ii) the number of fibers (quantified by phase contrast microscopy [PCM]) per mass of dust generated by sanding JCC, as determined in a bench‐scale chamber study using a recreated JCC, that convert respirable dust concentrations to fiber concentrations. Airborne respirable PCM‐fiber concentration medians (and 95% confidence intervals) derived for output variables using the new procedure were 0.26 (0.039, 1.7) f/cm3 and 0.078 (0.013, 0.47) f/cm3, and corresponding total fiber concentrations were 1.2 (0.17, 9.2) f/cm3 and 0.37 (0.056, 2.5) f/cm3, in enclosed and nonenclosed environments, respectively. Corresponding estimates of respirable and total PCM fiber concentrations measured historically during sanding of asbestos‐containing joint compound—adjusted for differences between peak and time‐weighted average (TWA) concentrations and documented analytical preparation and sampling artifacts—were 0.15 (0.019, 0.95) f/cm3 and 0.86 (0.11, 5.4) f/cm3, respectively. The PCM‐fiber concentration distributions estimated using the new procedure bound the distribution estimated from adjusted TWA historical fiber measurements, suggesting reasonable consistency of these estimates taking into account uncertainties addressed in this study.

Suggested Citation

  • G. P. Brorby & P. J. Sheehan & D. W. Berman & K. T. Bogen & S. E. Holm, 2013. "Exposures from Chrysotile‐Containing Joint Compound: Evaluation of New Model Relating Respirable Dust to Fiber Concentrations," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 161-176, January.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:1:p:161-176
    DOI: 10.1111/j.1539-6924.2012.01847.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2012.01847.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2012.01847.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. P. Royston, 1982. "Expected Normal Order Statistics (Exact and Approximate)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 161-165, June.
    2. Kenneth T. Bogen & Robert C. Spear, 1987. "Integrating Uncertainty and Interindividual Variability in Environmental Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 7(4), pages 427-436, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fred W. Boelter & Yulin Xia & Linda Dell, 2015. "Comparative Risks of Cancer from Drywall Finishing Based on Stochastic Modeling of Cumulative Exposures to Respirable Dusts and Chrysotile Asbestos Fibers," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 859-871, May.
    2. Elizabeth L. Anderson & Patrick J. Sheehan & Renee M. Kalmes & John R. Griffin, 2017. "Assessment of Health Risk from Historical Use of Cosmetic Talcum Powder," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 918-929, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seongmin Kang & Joonyoung Roh & Eui-chan Jeon, 2020. "Seasonal Variation Analysis Method of GHG at Municipal Solid Waste Incinerator," Sustainability, MDPI, vol. 12(18), pages 1-10, September.
    2. Brent Finley & Deborah Proctor & Paul Scott & Natalie Harrington & Dennis Paustenbach & Paul Price, 1994. "Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 533-553, August.
    3. Seongmin Kang & Jeahyung Cha & Changsang Cho & Ki-Hyun Kim & Eui-Chan Jeon, 2020. "Estimation of appropriate CO2 concentration sampling cycle for MSW incinerators," Energy & Environment, , vol. 31(3), pages 535-544, May.
    4. Pettigrew Stephen, 2014. "How the West will be won: using Monte Carlo simulations to estimate the effects of NHL realignment," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(3), pages 345-355, September.
    5. Kenneth T. Bogen, 2014. "Does EPA Underestimate Cancer Risks by Ignoring Susceptibility Differences?," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1780-1784, October.
    6. Junyu Zheng & H. Christopher Frey, 2005. "Quantitative Analysis of Variability and Uncertainty with Known Measurement Error: Methodology and Case Study," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 663-675, June.
    7. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    8. Patrick Sheehan & Ankur Singhal & Kenneth T. Bogen & David MacIntosh & Renee M. Kalmes & John McCarthy, 2018. "Potential Exposure and Cancer Risk from Formaldehyde Emissions from Installed Chinese Manufactured Laminate Flooring," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1128-1142, June.
    9. Kenneth T. Bogen, 2014. "Unveiling Variability and Uncertainty for Better Science and Decisions on Cancer Risks from Environmental Chemicals," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1795-1806, October.
    10. Daniele Coin, 2017. "A goodness-of-fit test for Generalized Error Distribution," Temi di discussione (Economic working papers) 1096, Bank of Italy, Economic Research and International Relations Area.
    11. Bas Groot Koerkamp & Theo Stijnen & Milton C. Weinstein & M. G. Myriam Hunink, 2011. "The Combined Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models," Medical Decision Making, , vol. 31(4), pages 650-661, July.
    12. Junyu Zheng & H. Christopher Frey, 2004. "Quantification of Variability and Uncertainty Using Mixture Distributions: Evaluation of Sample Size, Mixing Weights, and Separation Between Components," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 553-571, June.
    13. Kenneth T. Bogen, 2005. "Risk Analysis for Environmental Health Triage," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1085-1095, October.
    14. Run-Peng Wei & Francis C. Yeh, 1999. "Optimal Diversity-Dependent Contributions of Genotypes to Mixtures," Biometrics, The International Biometric Society, vol. 55(2), pages 350-354, June.
    15. Mark Nicas, 1996. "An Analytical Framework for Relating Dose, Risk, and Incidence: An Application to Occupational Tuberculosis Infection," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 527-538, August.
    16. Paul S. Price & Cynthia L. Curry & Philip E. Goodrum & Michael N. Gray & Jane I. McCrodden & Natalie W. Harrington & Heather Carlson‐Lynch & Russell E. Keenan, 1996. "Monte Carlo Modeling of Time‐Dependent Exposures Using a Microexposure Event Approach," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 339-348, June.
    17. Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
    18. Coin, Daniele, 2008. "A goodness-of-fit test for normality based on polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2185-2198, January.
    19. Zhichao Zheng & Karthik Natarajan & Chung-Piaw Teo, 2016. "Least Squares Approximation to the Distribution of Project Completion Times with Gaussian Uncertainty," Operations Research, INFORMS, vol. 64(6), pages 1406-1421, December.
    20. Paul S. Price & Steave H. Su & Jeff R. Harrington & Russell E. Keenan, 1996. "Uncertainty and Variation in Indirect Exposure Assessments: An Analysis of Exposure to Tetrachlorodibenzo‐p‐Dioxin from a Beef Consumption Pathway," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 263-277, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:1:p:161-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.