IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v28y2008i5p1357-1374.html
   My bibliography  Save this article

Flood Risk Assessment in the Netherlands: A Case Study for Dike Ring South Holland

Author

Listed:
  • Sebastiaan N. Jonkman
  • Matthijs Kok
  • Johannes K. Vrijling

Abstract

Large parts of the Netherlands are below sea level. Therefore, it is important to have insight into the possible consequences and risks of flooding. In this article, an analysis of the risks due to flooding of the dike ring area South Holland in the Netherlands is presented. For different flood scenarios the potential number of fatalities is estimated. Results indicate that a flood event in this area can expose large and densely populated areas and result in hundreds to thousands of fatalities. Evacuation of South Holland before a coastal flood will be difficult due to the large amount of time required for evacuation and the limited time available. By combination with available information regarding the probability of occurrence of different flood scenarios, the flood risks have been quantified. The probability of death for a person in South Holland due to flooding, the so‐called individual risk, is small. The probability of a flood disaster with many fatalities, the so‐called societal risk, is relatively large in comparison with the societal risks in other sectors in the Netherlands, such as the chemical sector and aviation. The societal risk of flooding appears to be unacceptable according to some of the existing risk limits that have been proposed in literature. These results indicate the necessity of a further societal discussion on the acceptable level of flood risk in the Netherlands and the need for additional risk reducing measures.

Suggested Citation

  • Sebastiaan N. Jonkman & Matthijs Kok & Johannes K. Vrijling, 2008. "Flood Risk Assessment in the Netherlands: A Case Study for Dike Ring South Holland," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1357-1374, October.
  • Handle: RePEc:wly:riskan:v:28:y:2008:i:5:p:1357-1374
    DOI: 10.1111/j.1539-6924.2008.01103.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2008.01103.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2008.01103.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pieter Jan M. Stallen & Rob Geerts & Han K. Vrijling, 1996. "Three Conceptions of Quantified Societal Risk," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 635-644, October.
    2. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    3. S. Jonkman & J. Vrijling & A. Vrouwenvelder, 2008. "Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 353-389, September.
    4. Heiko Apel & Annegret Thieken & Bruno Merz & Günter Blöschl, 2006. "A Probabilistic Modelling System for Assessing Flood Risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 79-100, May.
    5. van Manen, Sipke E. & Brinkhuis, Martine, 2005. "Quantitative flood risk assessment for Polders," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Gijón Mancheño & Peter M. J. Herman & Sebastiaan N. Jonkman & Swarna Kazi & Ignacio Urrutia & Mathijs van Ledden, 2021. "Mapping Mangrove Opportunities with Open Access Data: A Case Study for Bangladesh," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    2. Pratyay Manna & Mohammed Zafar Anis & Prasun Das & Soumya Banerjee, 2019. "Probabilistic Modeling of Flood Hazard and its Risk Assessment for Eastern Region of India," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1615-1633, July.
    3. Sebastiaan N. Jonkman & Ruben Jongejan & Bob Maaskant, 2011. "The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy—Nationwide Estimates of Societal Risk and Policy Applications," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 282-300, February.
    4. Sergii Skakun & Nataliia Kussul & Andrii Shelestov & Olga Kussul, 2014. "Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1521-1537, August.
    5. Malecha, Matthew L. & Brand, A.D. & Berke, Philip R., 2018. "Spatially evaluating a network of plans and flood vulnerability using a Plan Integration for Resilience Scorecard: A case study in Feijenoord District, Rotterdam, the Netherlands," Land Use Policy, Elsevier, vol. 78(C), pages 147-157.
    6. Sebastiaan N. Jonkman & Bob Maaskant & Ezra Boyd & Marc Lloyd Levitan, 2009. "Loss of Life Caused by the Flooding of New Orleans After Hurricane Katrina: Analysis of the Relationship Between Flood Characteristics and Mortality," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 676-698, May.
    7. Zhiyi Meng & Liming Yao, 2018. "Earthquake triggered networked risk and response: based on relevant literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2645-2666, November.
    8. R. Gerrard & A. Tsanakas, 2011. "Failure Probability Under Parameter Uncertainty," Risk Analysis, John Wiley & Sons, vol. 31(5), pages 727-744, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiaan N. Jonkman & Ruben Jongejan & Bob Maaskant, 2011. "The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy—Nationwide Estimates of Societal Risk and Policy Applications," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 282-300, February.
    2. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    3. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    4. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    5. Manuela Mauro & Karin Bruijn & Matteo Meloni, 2012. "Quantitative methods for estimating flood fatalities: towards the introduction of loss-of-life estimation in the assessment of flood risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1083-1113, September.
    6. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    7. George R. Priest & Laura L. Stimely & Nathan J. Wood & Ian P. Madin & Rudie J. Watzig, 2016. "Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1031-1056, January.
    8. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    9. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    10. Sergii Skakun & Nataliia Kussul & Andrii Shelestov & Olga Kussul, 2014. "Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1521-1537, August.
    11. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    12. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    13. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    14. Nathan Wood & Mathew Schmidtlein, 2013. "Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1603-1628, February.
    15. R. Jelínek & E. Krausmann & M. González & J. Álvarez-Gómez & J. Birkmann & T. Welle, 2012. "Approaches for tsunami risk assessment and application to the city of Cádiz, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 273-293, January.
    16. Mehdi Karbasi & Alireza Shokoohi & Bahram Saghafian, 2018. "Loss of Life Estimation Due to Flash Floods in Residential Areas using a Regional Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4575-4589, November.
    17. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    18. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    19. Riyanti Djalante & Cameron Holley & Frank Thomalla & Michelle Carnegie, 2013. "Pathways for adaptive and integrated disaster resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2105-2135, December.
    20. K. M. Bruijn & N. Lips & B. Gersonius & H. Middelkoop, 2016. "The storyline approach: a new way to analyse and improve flood event management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 99-121, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:28:y:2008:i:5:p:1357-1374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.