IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i5p1185-1199.html
   My bibliography  Save this article

Standardized Approach for Developing Probabilistic Exposure Factor Distributions

Author

Listed:
  • Randy L. Maddalena
  • Thomas E. McKone
  • Michael D. Sohn

Abstract

The effectiveness of a probabilistic risk assessment (PRA) depends on the quality and relevance of the output from exposure and risk models, which, in turn, depends on the critical inputs to the assessment. These critical inputs are often in the form of probabilistic exposure factor distributions that are derived for the given risk scenario. Deriving probabilistic distributions for model inputs can be time consuming and subjective. The absence of a standard approach for developing these distributions can result in PRAs that are inconsistent and difficult to review by regulatory agencies. We present an approach that reduces subjectivity in the distribution development process without limiting the flexibility needed to prepare relevant PRAs. The approach requires two steps. First, we analyze data pooled at a population scale to (i) identify the most robust demographic descriptors within the population for a given exposure factor, (ii) partition the data into subsets based on these variables, and (iii) construct archetypal distributions for each subpopulation. Second, we sample from these archetypal distributions according to site‐ or scenario‐specific conditions to simulate exposure factor values and use these values to construct the scenario‐specific input distribution. The archetypal distributions developed through Step 1 provide a consistent basis for developing scenario‐specific distributions so risk assessors will not have to repeatedly collect and analyze raw data for each new assessment. We demonstrate the approach for two commonly used exposure factors—body weight (BW) and exposure duration (ED)—using data that are representative of the U.S. population. For these factors we provide a first set of subpopulation‐based archetypal distributions and demonstrate methods for using these distributions to construct relevant scenario‐specific probabilistic exposure factor distributions.

Suggested Citation

  • Randy L. Maddalena & Thomas E. McKone & Michael D. Sohn, 2004. "Standardized Approach for Developing Probabilistic Exposure Factor Distributions," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1185-1199, October.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:5:p:1185-1199
    DOI: 10.1111/j.0272-4332.2004.00518.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00518.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00518.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miron Israeli & Christopher B. Nelson, 1992. "Distribution and Expected Time of Residence for U.S. Households," Risk Analysis, John Wiley & Sons, vol. 12(1), pages 65-72, March.
    2. David E. Burmaster & Edmund A. C. Crouch, 1997. "Lognormal Distributions for Body Weight as a Function of Age for Males and Females in the United States, 1976–1980," Risk Analysis, John Wiley & Sons, vol. 17(4), pages 499-505, August.
    3. David E. Burmaster & Donald M. Murray, 1998. "A Trivariate Distribution for the Height, Weight, and Fat of Adult Men," Risk Analysis, John Wiley & Sons, vol. 18(4), pages 385-389, August.
    4. David E. Burmaster, 1998. "Lognormal Distributions for Skin Area as a Function of Body Weight," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 27-32, February.
    5. Bruce S. Binkowitz & Daniel Wartenberg, 2001. "Disparity in Quantitative Risk Assessment: A Review of Input Distributions," Risk Analysis, John Wiley & Sons, vol. 21(1), pages 75-90, February.
    6. Brent Finley & Deborah Proctor & Paul Scott & Natalie Harrington & Dennis Paustenbach & Paul Price, 1994. "Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 533-553, August.
    7. Joseph N. Eisenberg & Edmund Y. W. Seto & Adam W. Olivieri & Robert C. Spear, 1996. "Quantifying Water Pathogen Risk in an Epidemiological Framework," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 549-563, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    2. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monika Filipsson & Tomas Öberg & Bo Bergbäck, 2011. "Variability and Uncertainty in Swedish Exposure Factors for Use in Quantitative Exposure Assessments," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 108-119, January.
    2. Dale Hattis & J Prerna Banati & Rob Goble & David E. Burmaster, 1999. "Human Interindividual Variability in Parameters Related to Health Risks," Risk Analysis, John Wiley & Sons, vol. 19(4), pages 711-726, August.
    3. Paul S. Price & Paul K. Scott & Natalie D. Wilson & Dennis J. Paustenbach, 1998. "An Empirical Approach for Deriving Information on Total Duration of Exposure from Information on Historical Exposure," Risk Analysis, John Wiley & Sons, vol. 18(5), pages 611-619, October.
    4. Charles N. Haas, 1997. "Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 107-113, February.
    5. Brent Finley & Deborah Proctor & Paul Scott & Natalie Harrington & Dennis Paustenbach & Paul Price, 1994. "Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 533-553, August.
    6. David E. Burmaster, 1998. "Lognormal Distributions for Skin Area as a Function of Body Weight," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 27-32, February.
    7. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.
    8. David E. Burmaster & Donald M. Murray, 1998. "A Trivariate Distribution for the Height, Weight, and Fat of Adult Men," Risk Analysis, John Wiley & Sons, vol. 18(4), pages 385-389, August.
    9. Lisa M. Funk & Richard Sedman & Jill A. J. Beals & Robert Fountain, 1998. "Quantifying the Distribution of Inhalation Exposure in Human Populations: 2. Distributions of Time Spent by Adults, Adolescents, and Children at Home, at Work, and at School," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 47-56, February.
    10. Frank J. Loge & Elisabetta Lambertini & Mark A. Borchardt & Hakan Başağaoğlu & Timothy R. Ginn, 2009. "Effects of Etiological Agent and Bather Shedding of Pathogens on Interpretation of Epidemiological Data Used to Establish Recreational Water Quality Standards," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 257-266, February.
    11. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    12. Kenneth Portier & J. Keith Tolson & Stephen M. Roberts, 2007. "Body Weight Distributions for Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 11-26, February.
    13. S. N. Rai & D. Krewski, 1998. "Uncertainty and Variability Analysis in Multiplicative Risk Models," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 37-45, February.
    14. Gilberto Montibeller & L. Alberto Franco & Ashley Carreras, 2020. "A Risk Analysis Framework for Prioritizing and Managing Biosecurity Threats," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2462-2477, November.
    15. Paul S. Price & Cynthia L. Curry & Philip E. Goodrum & Michael N. Gray & Jane I. McCrodden & Natalie W. Harrington & Heather Carlson‐Lynch & Russell E. Keenan, 1996. "Monte Carlo Modeling of Time‐Dependent Exposures Using a Microexposure Event Approach," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 339-348, June.
    16. Margaret Donald & Angus Cook & Kerrie Mengersen, 2009. "Bayesian Network for Risk of Diarrhea Associated with the Use of Recycled Water," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1672-1685, December.
    17. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.
    18. Guido Sassi & Bernardo Ruggeri, 2008. "Uncertainty Evaluation of Human Risk Analysis (HRA) of Chemicals by Multiple Exposure Routes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1343-1356, October.
    19. Duncan A. Robertson, 2019. "Spatial Transmission Models: A Taxonomy and Framework," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 225-243, January.
    20. Paul S. Price & Steave H. Su & Jeff R. Harrington & Russell E. Keenan, 1996. "Uncertainty and Variation in Indirect Exposure Assessments: An Analysis of Exposure to Tetrachlorodibenzo‐p‐Dioxin from a Beef Consumption Pathway," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 263-277, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:5:p:1185-1199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.