IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v14y1994i4p449-463.html
   My bibliography  Save this article

Uncertainty and Variability in Human Exposures to Soil Contaminants Through Home‐Grown Food: A Monte Carlo Assessment

Author

Listed:
  • Thomas E. McKone

Abstract

This paper presents a general model for exposure to homegrown foods that is used with a Monte Carlo analysis to determine the relative contributions of variability (Type A uncertainty) and true uncertainty (Type B uncertainty) to the overall variance in prediction of the dose‐to‐concentration ratio. Although classification of exposure inputs as uncertain or variable is somewhat subjective, food consumption rates and exposure duration are judged to have a predicted variance that is dominated by variability among individuals by age, income, culture, and geographical region. Whereas, biotransfer factors and partition factors are inputs that, to a large extent, involve uncertainty. Using ingestion of fruits, vegetables, grains, dairy products, and meat and soils assumed to be contaminated by hexachlorbenzene (HCB) and benzo(a)pyrene (BaP) as cases studies, a Monte Carlo analysis is used to explore the relative contribution of uncertainty and variability to overall variance in the estimated distribution of potential dose within the population that consumes homegrown foods. It is found that, when soil concentrations are specified, variances in ratios of dose‐to‐concentration for HCB are equally attributable to uncertainty and variability, whereas for BaP, variance in these ratios is dominated by true uncertainty.

Suggested Citation

  • Thomas E. McKone, 1994. "Uncertainty and Variability in Human Exposures to Soil Contaminants Through Home‐Grown Food: A Monte Carlo Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 449-463, August.
  • Handle: RePEc:wly:riskan:v:14:y:1994:i:4:p:449-463
    DOI: 10.1111/j.1539-6924.1994.tb00263.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1994.tb00263.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1994.tb00263.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maged M. Hamed & Philip B. Bedient, 1997. "On the Effect of Probability Distributions of Input Variables in Public Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 97-105, February.
    2. H. Christopher Frey & David E. Burmaster, 1999. "Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood‐Based Approaches," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 109-130, February.
    3. Katherine E. Von Stackelberg & Dmitriy Burmistrov & Donna J. Vorhees & Todd Bridges & Igor Linkov, 2002. "Importance of Uncertainty and Variability to Predicted Risks from Trophic Transfer of PCBs in Dredged Sediments," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 499-512, June.
    4. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    5. T. E. McKone & J. I. Daniels & M. Goldman, 1996. "Uncertainties in the Link Between Global Climate Change and Predicted Health Risks from Pollution: Hexachlorobenzene (HCB) Case Study Using a Fugacity Model," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 377-393, June.
    6. Frédéric Dor & Pascal Empereur‐Bissonnet & Denis Zmirou & Vincent Nedellec & Jean‐Marie Haguenoer & Frans Jongeneelen & Alain Person & William Dab & Colin Ferguson, 2003. "Validation of Multimedia Models Assessing Exposure to PAHs—The SOLEX Study," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1047-1057, October.
    7. Lisa M. Funk & Richard Sedman & Jill A. J. Beals & Robert Fountain, 1998. "Quantifying the Distribution of Inhalation Exposure in Human Populations: 2. Distributions of Time Spent by Adults, Adolescents, and Children at Home, at Work, and at School," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 47-56, February.
    8. Lee, Chang-Ju & Lee, Kun Jai, 2006. "Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 515-532.
    9. Paul S. Price & Steave H. Su & Jeff R. Harrington & Russell E. Keenan, 1996. "Uncertainty and Variation in Indirect Exposure Assessments: An Analysis of Exposure to Tetrachlorodibenzo‐p‐Dioxin from a Beef Consumption Pathway," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 263-277, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Lee, Sang-Hee & Park, Cheol-Min, 2022. "The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study," Ecological Modelling, Elsevier, vol. 464(C).
    3. Shabbir Ahmed Osmani & Foysol Mahmud, 2021. "An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1976-1993, February.
    4. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    5. Nicolas A. Menzies & Brian W. Allwood & Anna S. Dean & Pete J. Dodd & Rein M. G. J. Houben & Lyndon P. James & Gwenan M. Knight & Jamilah Meghji & Linh N. Nguyen & Andrea Rachow & Samuel G. Schumacher, 2023. "Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Alan H. Stern, 1993. "Re‐evaluation of the Reference Dose for Methylmercury and Assessment of Current Exposure Levels," Risk Analysis, John Wiley & Sons, vol. 13(3), pages 355-364, June.
    7. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    8. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    9. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    10. Gorka Merino & Hilario Murua & Josu Santiago & Haritz Arrizabalaga & Victor Restrepo, 2020. "Characterization, Communication, and Management of Uncertainty in Tuna Fisheries," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    11. Messan, Komi & Rodriguez Messan, Marisabel & Chen, Jun & DeGrandi-Hoffman, Gloria & Kang, Yun, 2021. "Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality," Ecological Modelling, Elsevier, vol. 440(C).
    12. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    13. M. Kadohira & M. A. Stevenson & H. R. Høgåsen & A. de Koeijer, 2012. "A Quantitative Risk Assessment for Bovine Spongiform Encephalopathy in Japan," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2198-2208, December.
    14. Liu, Zicheng & Lesselier, Dominique & Sudret, Bruno & Wiart, Joe, 2020. "Surrogate modeling based on resampled polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. John H. Miller, 1996. "Active Nonlinear Tests (ANTs) of Complex Simulation Models," Working Papers 96-03-011, Santa Fe Institute.
    16. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    17. Yan Yang & Guoqiang Wang & Lijing Wang & Jingshan Yu & Zongxue Xu, 2014. "Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    18. Victor R. Vasquez & Wallace B. Whiting, 2005. "Accounting for Both Random Errors and Systematic Errors in Uncertainty Propagation Analysis of Computer Models Involving Experimental Measurements with Monte Carlo Methods," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1669-1681, December.
    19. Maxine E. Dakins & John E. Toll & Mitchell J. Small & Kevin P. Brand, 1996. "Risk‐Based Environmental Remediation: Bayesian Monte Carlo Analysis and the Expected Value of Sample Information," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 67-79, February.
    20. Yang Yang & Haiyan Liu, 2022. "Sensitivity analysis of disease-information coupling propagation dynamics model parameters," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:14:y:1994:i:4:p:449-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.