IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i2d10.1007_s10668-020-00659-4.html
   My bibliography  Save this article

An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection

Author

Listed:
  • Shabbir Ahmed Osmani

    (Leading University)

  • Foysol Mahmud

    (Leading University)

Abstract

Challenges in the provision of a safe water distribution system have become one of the major concerns to the society. Various models and algorithms have been developed so far to incorporate in the early warning systems. This study focuses on the use of machine learning (ML) algorithms on different contaminated datasets. Fine tree (FT) and linear support vector machine (LSVM) were chosen to classify the events. To select the best combination of event and nonevent data, nondominated sorting genetic algorithm-II is integrated with the algorithms that helps to obtain an optimal solution of minimized false positive rate (FPR) and minimized false negative rate (FNR). Results suggest that both FT and LSVM minimized FPR and FNR very effectively. However, FT performed better than LSVM in a supervised and laboratory-controlled dataset, and it showed its superiority in securing robustness over LSVM and fuzziness-based methods in different uncertain scenarios of the study datasets. Moreover, the study initiated a novel approach by executing FT and LSVM models to classify contamination events in a combination of two datasets of various contaminants. It produced better results compared to the Pearson correlation–Euclidean distance (PE) method applied in the same dataset. In addition, the ML algorithms showed their consistency in detecting most of the simulated events using different ranges of spikes.

Suggested Citation

  • Shabbir Ahmed Osmani & Foysol Mahmud, 2021. "An integrated approach of machine algorithms with multi-objective optimization in performance analysis of event detection," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1976-1993, February.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00659-4
    DOI: 10.1007/s10668-020-00659-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00659-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00659-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Lee, Sang-Hee & Park, Cheol-Min, 2022. "The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study," Ecological Modelling, Elsevier, vol. 464(C).
    3. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    4. Nicolas A. Menzies & Brian W. Allwood & Anna S. Dean & Pete J. Dodd & Rein M. G. J. Houben & Lyndon P. James & Gwenan M. Knight & Jamilah Meghji & Linh N. Nguyen & Andrea Rachow & Samuel G. Schumacher, 2023. "Global burden of disease due to rifampicin-resistant tuberculosis: a mathematical modeling analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Alan H. Stern, 1993. "Re‐evaluation of the Reference Dose for Methylmercury and Assessment of Current Exposure Levels," Risk Analysis, John Wiley & Sons, vol. 13(3), pages 355-364, June.
    6. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    7. James K. Hammitt, 1990. "Subjective‐Probability‐Based Scenarios for Uncertain Input Parameters: Stratospheric Ozone Depletion," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 93-102, March.
    8. Yizhen Wang & Menglei Cui & Jiong Guo & Han Zhang & Yingjie Wu & Fu Li, 2023. "Decay Branch Ratio Sampling Method with Dirichlet Distribution," Energies, MDPI, vol. 16(4), pages 1-17, February.
    9. Gorka Merino & Hilario Murua & Josu Santiago & Haritz Arrizabalaga & Victor Restrepo, 2020. "Characterization, Communication, and Management of Uncertainty in Tuna Fisheries," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    10. Messan, Komi & Rodriguez Messan, Marisabel & Chen, Jun & DeGrandi-Hoffman, Gloria & Kang, Yun, 2021. "Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality," Ecological Modelling, Elsevier, vol. 440(C).
    11. Ronald L. Iman & Mark E. Johnson & Charles C. Watson, 2005. "Uncertainty Analysis for Computer Model Projections of Hurricane Losses," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1299-1312, October.
    12. M. Kadohira & M. A. Stevenson & H. R. Høgåsen & A. de Koeijer, 2012. "A Quantitative Risk Assessment for Bovine Spongiform Encephalopathy in Japan," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2198-2208, December.
    13. Liu, Zicheng & Lesselier, Dominique & Sudret, Bruno & Wiart, Joe, 2020. "Surrogate modeling based on resampled polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. John H. Miller, 1996. "Active Nonlinear Tests (ANTs) of Complex Simulation Models," Working Papers 96-03-011, Santa Fe Institute.
    15. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    16. Yan Yang & Guoqiang Wang & Lijing Wang & Jingshan Yu & Zongxue Xu, 2014. "Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    17. Victor R. Vasquez & Wallace B. Whiting, 2005. "Accounting for Both Random Errors and Systematic Errors in Uncertainty Propagation Analysis of Computer Models Involving Experimental Measurements with Monte Carlo Methods," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1669-1681, December.
    18. Thomas E. McKone, 1994. "Uncertainty and Variability in Human Exposures to Soil Contaminants Through Home‐Grown Food: A Monte Carlo Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 449-463, August.
    19. Maxine E. Dakins & John E. Toll & Mitchell J. Small & Kevin P. Brand, 1996. "Risk‐Based Environmental Remediation: Bayesian Monte Carlo Analysis and the Expected Value of Sample Information," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 67-79, February.
    20. Yang Yang & Haiyan Liu, 2022. "Sensitivity analysis of disease-information coupling propagation dynamics model parameters," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00659-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.