IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i3p499-512.html
   My bibliography  Save this article

Importance of Uncertainty and Variability to Predicted Risks from Trophic Transfer of PCBs in Dredged Sediments

Author

Listed:
  • Katherine E. Von Stackelberg
  • Dmitriy Burmistrov
  • Donna J. Vorhees
  • Todd Bridges
  • Igor Linkov

Abstract

Biomagnification of organochlorine and other persistent organic contaminants by higher trophic level organisms represents one of the most significant sources of uncertainty and variability in evaluating potential risks associated with disposal of dredged materials. While it is important to distinguish between population variability (e.g., true population heterogeneity in fish weight, and lipid content) and uncertainty (e.g., measurement error), they can be operationally difficult to define separately in probabilistic estimates of human health and ecological risk. We propose a disaggregation of uncertain and variable parameters based on: (1) availability of supporting data; (2) the specific management and regulatory context (in this case, of the U.S. Army Corps of Engineers/U.S. Environmental Protection Agency tiered approach to dredged material management); and (3) professional judgment and experience in conducting probabilistic risk assessments. We describe and quantitatively evaluate several sources of uncertainty and variability in estimating risk to human health from trophic transfer of polychlorinated biphenyls (PCBs) using a case study of sediments obtained from the New York‐New Jersey Harbor and being evaluated for disposal at an open water off‐shore disposal site within the northeast region. The estimates of PCB concentrations in fish and dietary doses of PCBs to humans ingesting fish are expressed as distributions of values, of which the arithmetic mean or mode represents a particular fractile. The distribution of risk values is obtained using a food chain biomagnification model developed by Gobas(1,2) by specifying distributions for input parameters disaggregated to represent either uncertainty or variability. Only those sources of uncertainty that could be quantified were included in the analysis. Results for several different two‐dimensional Latin Hypercube analyses are provided to evaluate the influence of the uncertain versus variable disaggregation of model parameters. The analysis suggests that variability in human exposure parameters is greater than the uncertainty bounds on any particular fractile, given the described assumptions.

Suggested Citation

  • Katherine E. Von Stackelberg & Dmitriy Burmistrov & Donna J. Vorhees & Todd Bridges & Igor Linkov, 2002. "Importance of Uncertainty and Variability to Predicted Risks from Trophic Transfer of PCBs in Dredged Sediments," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 499-512, June.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:3:p:499-512
    DOI: 10.1111/0272-4332.00033
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0272-4332.00033
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0272-4332.00033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul S. Price & Steave H. Su & Jeff R. Harrington & Russell E. Keenan, 1996. "Uncertainty and Variation in Indirect Exposure Assessments: An Analysis of Exposure to Tetrachlorodibenzo‐p‐Dioxin from a Beef Consumption Pathway," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 263-277, April.
    2. Thomas E. McKone, 1994. "Uncertainty and Variability in Human Exposures to Soil Contaminants Through Home‐Grown Food: A Monte Carlo Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 449-463, August.
    3. Alison C. Cullen, 1994. "Measures of Compounding Conservatism in Probabilistic Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 389-393, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. P. Seager & J. H. Lambert & K. H. Gardner, 2007. "Fostering Innovation in Contaminated Sediments Management Through Multicriteria Technology Assessment and Public Participation," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1043-1052, August.
    2. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul S. Price & Steave H. Su & Jeff R. Harrington & Russell E. Keenan, 1996. "Uncertainty and Variation in Indirect Exposure Assessments: An Analysis of Exposure to Tetrachlorodibenzo‐p‐Dioxin from a Beef Consumption Pathway," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 263-277, April.
    2. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    3. Jane G. Pouzou & Alison C. Cullen & Michael G. Yost & John C. Kissel & Richard A. Fenske, 2018. "Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1223-1238, June.
    4. Maged M. Hamed & Philip B. Bedient, 1997. "On the Effect of Probability Distributions of Input Variables in Public Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 97-105, February.
    5. T. E. McKone & J. I. Daniels & M. Goldman, 1996. "Uncertainties in the Link Between Global Climate Change and Predicted Health Risks from Pollution: Hexachlorobenzene (HCB) Case Study Using a Fugacity Model," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 377-393, June.
    6. Frédéric Dor & Pascal Empereur‐Bissonnet & Denis Zmirou & Vincent Nedellec & Jean‐Marie Haguenoer & Frans Jongeneelen & Alain Person & William Dab & Colin Ferguson, 2003. "Validation of Multimedia Models Assessing Exposure to PAHs—The SOLEX Study," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1047-1057, October.
    7. Lisa M. Funk & Richard Sedman & Jill A. J. Beals & Robert Fountain, 1998. "Quantifying the Distribution of Inhalation Exposure in Human Populations: 2. Distributions of Time Spent by Adults, Adolescents, and Children at Home, at Work, and at School," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 47-56, February.
    8. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.
    9. H. Christopher Frey & David E. Burmaster, 1999. "Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood‐Based Approaches," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 109-130, February.
    10. Viscusi, W. Kip & Hamilton, James T. & Dockins, P. Christen, 1997. "Conservative versus Mean Risk Assessments: Implications for Superfund Policies," Journal of Environmental Economics and Management, Elsevier, vol. 34(3), pages 187-206, November.
    11. Lee, Chang-Ju & Lee, Kun Jai, 2006. "Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 515-532.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:3:p:499-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.