IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305093.html
   My bibliography  Save this article

Surrogate modeling based on resampled polynomial chaos expansions

Author

Listed:
  • Liu, Zicheng
  • Lesselier, Dominique
  • Sudret, Bruno
  • Wiart, Joe

Abstract

In surrogate modeling, polynomial chaos expansion (PCE) is popularly utilized to represent the random model responses, which are computationally expensive and usually obtained by deterministic numerical modeling approaches including finite-element and finite-difference time-domain methods. Recently, efforts have been made on improving the prediction performance of the PCE-based model and building efficiency by only selecting the influential basis polynomials (e.g., via the approach of least angle regression). This paper proposes an approach, named as resampled PCE (rPCE), to further optimize the selection by making use of the knowledge that the true model is fixed despite the statistical uncertainty inherent to sampling in the training. By simulating data variation via resampling (k-fold division utilized here) and collecting the selected polynomials with respect to all resamples, polynomials are ranked mainly according to the selection frequency. The resampling scheme (the value of k here) matters much and various configurations are considered and compared. The proposed resampled PCE is implemented with two popular selection techniques, namely least angle regression and orthogonal matching pursuit, and a combination thereof. The performance of the proposed algorithm is demonstrated on two analytical examples, a benchmark problem in structural mechanics, as well as a realistic case study in computational dosimetry.

Suggested Citation

  • Liu, Zicheng & Lesselier, Dominique & Sudret, Bruno & Wiart, Joe, 2020. "Surrogate modeling based on resampled polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305093
    DOI: 10.1016/j.ress.2020.107008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubreuil, S. & Berveiller, M. & Petitjean, F. & Salaün, M., 2014. "Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 263-275.
    2. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    3. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    4. Ronald L. Iman & Jon C. Helton, 1988. "An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 71-90, March.
    5. Patrick Royston & Willi Sauerbrei, 2009. "Bootstrap assessment of the stability of multivariable models," Stata Journal, StataCorp LP, vol. 9(4), pages 547-570, December.
    6. Riccardo De Bin & Silke Janitza & Willi Sauerbrei & Anne-Laure Boulesteix, 2016. "Subsampling versus bootstrapping in resampling-based model selection for multivariable regression," Biometrics, The International Biometric Society, vol. 72(1), pages 272-280, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Xu, Hui & Grigoriu, Mircea D. & Gurley, Kurtis R., 2023. "A novel surrogate for extremes of random functions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Zhang, Zheng & Wang, Pan & Hu, Huanhuan & Li, Lei & Li, Haihe & Yue, Zhufeng, 2022. "Efficient reliability-based design optimization for hydraulic pipeline with adaptive sampling region," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Zhao, Yunjie & Cheng, Xi & Zhang, Taihong & Wang, Lei & Shao, Wei & Wiart, Joe, 2023. "A global–local attention network for uncertainty analysis of ground penetrating radar modeling," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Jiang, Zhong-ming & Feng, De-Cheng & Zhou, Hao & Tao, Wei-Feng, 2021. "A recursive dimension-reduction method for high-dimensional reliability analysis with rare failure event," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    2. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    4. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    6. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    7. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    8. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    9. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Awad, Mahmoud, 2017. "Analyzing sensitivity measures using moment-matching technique," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 90-99.
    11. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    12. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.
    13. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    14. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    15. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    16. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    17. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    18. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    19. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    20. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.