IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v13y1993i1p51-62.html
   My bibliography  Save this article

A Compartmental Model for the Prediction of Breath Concentration and Absorbed Dose of Chloroform After Exposure While Showering

Author

Listed:
  • Robert L. Chinery
  • A. Kevin Gleason

Abstract

In order to predict the exhaled breath concentration of chloroform in individuals exposed to chloroform while showering, an existing physiologically based pharmacokinetic (PB‐PK) model was modified to include a multicompartment, PB‐PK model for the skin and a completely mixed shower exposure model. The PB‐PK model of the skin included the stratum corneum as the principal resistance to absorption and a viable epidermis which is in dynamic equilibrium with the skin microcirculation. This model was calibrated with measured exhaled breath concentrations of chloroform in individuals exposed while showering with and without dermal absorption. The calibration effort indicated that the expected value of skin‐blood partitioning coefficient would be 1.2 when the degree of transfer of chloroform from shower water into shower air was 61%. The stratum corneum permeability coefficient for chloroform was estimated to be within the range of 0.16‐0.36 cm/hr and the expected value was 0.2 cm/hr. The estimated ratio of the dermally and inhaled absorbed doses ranged between 0.6 and 2.2 and the expected value was 0.75. These results indicate that for the purposes of risk assessment for dermal exposure to chloroform, a simple steady‐state model can be used to predict the degree of dermal absorption and that a reasonable value of skin permeability coefficient for chloroform used in this model would be 0.2 cm/hr. Further research should be conducted to compare the elimination of chloroform via exhaled breath when different exposure routes are being compared. The model results from this study suggest that multiple measurements of exhaled breath concentrations after exposure may be necessary when making comparisons of breath concentrations that involve different exposure routes.

Suggested Citation

  • Robert L. Chinery & A. Kevin Gleason, 1993. "A Compartmental Model for the Prediction of Breath Concentration and Absorbed Dose of Chloroform After Exposure While Showering," Risk Analysis, John Wiley & Sons, vol. 13(1), pages 51-62, February.
  • Handle: RePEc:wly:riskan:v:13:y:1993:i:1:p:51-62
    DOI: 10.1111/j.1539-6924.1993.tb00728.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1993.tb00728.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1993.tb00728.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenneth T. Bogen & Thomas E. McKone, 1988. "Linking Indoor Air and Pharmacokinetic Models to Assess Tetrachloroethylene Risk," Risk Analysis, John Wiley & Sons, vol. 8(4), pages 509-520, December.
    2. Brown, H.S. & Bishop, D.R. & Rowan, C.A., 1984. "The role of skin absorption as a route of exposure for volatile organic compounds (VOCs) in drinking water," American Journal of Public Health, American Public Health Association, vol. 74(5), pages 479-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth T. Bogen, 2013. "Dermal Uptake of 18 Dilute Aqueous Chemicals: In Vivo Disappearance‐Method Measures Greatly Exceed In Vitro‐Based Predictions," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1334-1352, July.
    2. Mohammad S. Islam & Luhua Zhao & James N. McDougal & Gordon L. Flynn, 1995. "Uptake of Chloroform by Skin During Short Exposures to Contaminated Water," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 343-352, June.
    3. A. Roy & C. P. Weisel & P. J. Lioy & P. G. Georgopoulos, 1996. "A Distributed Parameter Physiologically‐Based Pharmacokinetic Model for Dermal and Inhalation Exposure to Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 147-160, April.
    4. Mohammad S. Islam & Luhua Zhao & Joseph Zhou & Lilly Dong & James N. McDougal & Gordon L. Flynn, 1996. "Systemic Uptake and Clearance of Chloroform by Hairless Rats Following Dermal Exposure. I. Brief Exposure to Aqueous Solutions," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 349-357, June.
    5. Joachim D. Pleil & Andrew B. Lindstrom, 1998. "Sample Timing and Mathematical Considerations for Modeling Breath Elimination of Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 18(5), pages 585-602, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Anthony Cox, 1995. "Simple Relations Between Administered and Internal Doses in Compartmental Flow Models," Risk Analysis, John Wiley & Sons, vol. 15(2), pages 197-204, April.
    2. A. Roy & C. P. Weisel & P. J. Lioy & P. G. Georgopoulos, 1996. "A Distributed Parameter Physiologically‐Based Pharmacokinetic Model for Dermal and Inhalation Exposure to Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 147-160, April.
    3. Kenneth T. Bogen & Thomas E. McKone, 1988. "Linking Indoor Air and Pharmacokinetic Models to Assess Tetrachloroethylene Risk," Risk Analysis, John Wiley & Sons, vol. 8(4), pages 509-520, December.
    4. Dale Hattis & Paul White & Laura Marmorstein & Paul Koch, 1990. "Uncertainties in Pharmacokinetic Modeling for Perchloroethylene. I. Comparison of Model Structure, Parameters, and Predictions for Low‐Dose Metabolism Rates for Models Derived by Different Authors," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 449-458, September.
    5. Kenneth T. Bogen, 2006. "Comment on “Steady State Solutions to PBPK Models and Their Applications to Risk Assessment I: Route to Route Extrapolation of Volatile Chemicals,” by Chiu and White in Risk Analysis, 26(3), 769–780," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1415-1415, December.
    6. Dale Hattis & Paul White & Paul Koch, 1993. "Uncertainties in Pharmacokinetic Modeling for Perchloroethylene: II. Comparison of Model Predictions with Data for a Variety of Different Parameters," Risk Analysis, John Wiley & Sons, vol. 13(6), pages 599-610, December.
    7. Brent Finley & Dennis Paustenbach, 1994. "The Benefits of Probabilistic Exposure Assessment: Three Case Studies Involving Contaminated Air, Water, and Soil," Risk Analysis, John Wiley & Sons, vol. 14(1), pages 53-73, February.
    8. Judith S. Schreiber, 1993. "Predicted Infant Exposure to Tetrachloroethene in Human Breastmilk," Risk Analysis, John Wiley & Sons, vol. 13(5), pages 515-524, October.
    9. Kenneth T. Bogen, 1995. "Methods to Approximate Joint Uncertainty and Variability in Risk," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 411-419, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:13:y:1993:i:1:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.