IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v15y1995i3p411-419.html
   My bibliography  Save this article

Methods to Approximate Joint Uncertainty and Variability in Risk

Author

Listed:
  • Kenneth T. Bogen

Abstract

As interest in quantitative analysis of joint uncertainty and interindividual variability (JUV) in risk grows, so does the need for related computational shortcuts. To quantify JUV in risk, Monte Carlo methods typically require nested sampling of JUV in distributed inputs, which is cumbersome and time‐consuming. Two approximation methods proposed here allow simpler and more rapid analysis. The first consists of new upper‐bound JUV estimators that involve only uncertainty or variability, not both, and so never require nested sampling to calculate. The second is a discrete‐probability‐calculus procedure that uses only the mean and one upper‐tail mean for each input in order to estimate mean and upper‐bound risk, which procedure is simpler and more intuitive than similar ones in use. Application of these methods is illustrated in an assessment of cancer risk from residential exposures to chloroform in Kanawah Valley, West Virginia. Because each of the multiple exposure pathways considered in this assessment had separate modeled sources of uncertainty and variability, the assessment illustrates a realistic case where a standard Monte Carlo approach to JUV analysis requires nested sampling. In the illustration, the first proposed method quantified JUV in cancer risk much more efficiently than corresponding nested Monte Carlo calculations. The second proposed method also nearly duplicated JUV‐related and other estimates of risk obtained using Monte Carlo methods. Both methods were thus found adequate to obtain basic risk estimates accounting for JUV in a realistically complex risk assessment. These methods make routine JUV analysis more convenient and practical.

Suggested Citation

  • Kenneth T. Bogen, 1995. "Methods to Approximate Joint Uncertainty and Variability in Risk," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 411-419, June.
  • Handle: RePEc:wly:riskan:v:15:y:1995:i:3:p:411-419
    DOI: 10.1111/j.1539-6924.1995.tb00333.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1995.tb00333.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1995.tb00333.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenneth T. Bogen & Thomas E. McKone, 1988. "Linking Indoor Air and Pharmacokinetic Models to Assess Tetrachloroethylene Risk," Risk Analysis, John Wiley & Sons, vol. 8(4), pages 509-520, December.
    2. Kenneth T. Bogen & Robert C. Spear, 1987. "Integrating Uncertainty and Interindividual Variability in Environmental Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 7(4), pages 427-436, December.
    3. Bruce C. Allen & Kenny S. Crump & Annette M. Shipp, 1988. "Response to Comments on Correlation Between Carcinogenic Potency of Chemicals in Animals and Humans," Risk Analysis, John Wiley & Sons, vol. 8(4), pages 559-561, December.
    4. Allen C. Miller, III & Thomas R. Rice, 1983. "Discrete Approximations of Probability Distributions," Management Science, INFORMS, vol. 29(3), pages 352-362, March.
    5. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    6. Bruce C. Allen & Kenny S. Crump & Annette M. Shipp, 1988. "Correlation Between Carcinogenic Potency of Chemicals in Animals and Humans," Risk Analysis, John Wiley & Sons, vol. 8(4), pages 531-544, December.
    7. Elizabeth L. Anderson, 1983. "Quantitative Approaches in Use to Assess Cancer Risk," Risk Analysis, John Wiley & Sons, vol. 3(4), pages 277-295, December.
    8. Kimberly M. Thompson & David E. Burmaster & Edmund A.C. Crouch3, 1992. "Monte Carlo Techniques for Quantitative Uncertainty Analysis in Public Health Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(1), pages 53-63, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Christopher Frey & David E. Burmaster, 1999. "Methods for Characterizing Variability and Uncertainty: Comparison of Bootstrap Simulation and Likelihood‐Based Approaches," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 109-130, February.
    2. Kenneth T. Bogen, 2005. "Risk Analysis for Environmental Health Triage," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1085-1095, October.
    3. A. E. Ades & G. Lu & J. P. T. Higgins, 2005. "The Interpretation of Random-Effects Meta-Analysis in Decision Models," Medical Decision Making, , vol. 25(6), pages 646-654, November.
    4. Kenneth T. Bogen & Patrick J. Sheehan, 2014. "Dermal Versus Total Uptake of Benzene from Mineral Spirits Solvent During Parts Washing," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1336-1358, July.
    5. S. N. Rai & D. Krewski, 1998. "Uncertainty and Variability Analysis in Multiplicative Risk Models," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 37-45, February.
    6. Adam M. Finkel & George Gray, 2018. "Taking the reins: how regulatory decision-makers can stop being hijacked by uncertainty," Environment Systems and Decisions, Springer, vol. 38(2), pages 230-238, June.
    7. Lee, Chang-Ju & Lee, Kun Jai, 2006. "Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 515-532.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth T. Bogen, 2014. "Does EPA Underestimate Cancer Risks by Ignoring Susceptibility Differences?," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1780-1784, October.
    2. Kenneth T. Bogen, 2014. "Unveiling Variability and Uncertainty for Better Science and Decisions on Cancer Risks from Environmental Chemicals," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1795-1806, October.
    3. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    4. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    5. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    6. Curtis C. Travis & Sheri T. Hester, 1990. "Background Exposure to Chemicals: What Is the Risk?," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 463-466, December.
    7. Brent Finley & Deborah Proctor & Paul Scott & Natalie Harrington & Dennis Paustenbach & Paul Price, 1994. "Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 533-553, August.
    8. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    9. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    10. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    11. Michael J. Goddard & Daniel Krewski, 1992. "Interspecies Extrapolation of Toxicity Data," Risk Analysis, John Wiley & Sons, vol. 12(2), pages 315-317, June.
    12. Karen Watanabe & Frédéric Y. Bois & Lauren Zeise, 1992. "Interspecies Extrapolation: A Reexamination of Acute Toxicity Data," Risk Analysis, John Wiley & Sons, vol. 12(2), pages 301-310, June.
    13. De Reyck, Bert & Degraeve, Zeger & Vandenborre, Roger, 2008. "Project options valuation with net present value and decision tree analysis," European Journal of Operational Research, Elsevier, vol. 184(1), pages 341-355, January.
    14. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    15. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    16. Bas Groot Koerkamp & Theo Stijnen & Milton C. Weinstein & M. G. Myriam Hunink, 2011. "The Combined Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models," Medical Decision Making, , vol. 31(4), pages 650-661, July.
    17. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    18. Daniel Krewski, 1990. "Measuring Carcinogenic Potency," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 615-617, December.
    19. Adam M. Finkel, 2014. "EPA Underestimates, Oversimplifies, Miscommunicates, and Mismanages Cancer Risks by Ignoring Human Susceptibility," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1785-1794, October.
    20. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:15:y:1995:i:3:p:411-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.