IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v267y2018i1d10.1007_s10479-017-2465-8.html
   My bibliography  Save this article

Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking

Author

Listed:
  • Nouha Nouri

    (Université de Tunis)

  • Talel Ladhari

    (Université de Tunis
    Umm Al-Qura University)

Abstract

Recently, the flow shop scheduling problem under blocking has gained broad attention in academic fields. Various papers have been devoted to investigate this issue and have been mostly restricted to the treatment of single objective at a time. Nevertheless, in practice the scheduling decisions often involve simultaneous consideration of multiple objectives (usually contradicting) to give more realistic solutions to the decision maker. In this study, we deal with a bi-objective blocking permutation flow shop scheduling problem where the makespan and total completion time are considered as objective functions. Both measures lead to an NP-hard problem. Our interest is to propose for the first time a Genetic Algorithm based on NSGA-II for searching locally Pareto-optimal frontier for the problem under consideration. The individuals in the algorithm are represented as discrete job permutations. Some specific versions of the NEH heuristic are used to generate the initial population. Non-dominated solutions and differences among parents are taken advantage of when designing the selection operator. The efficiency of the proposed algorithm, based on various metrics, is compared against the multiobjective evolutionary algorithm SPEA-II.

Suggested Citation

  • Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.
  • Handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-017-2465-8
    DOI: 10.1007/s10479-017-2465-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2465-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2465-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. R. Rahimi-Vahed & S. M. Mirghorbani, 2007. "A multi-objective particle swarm for a flow shop scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 79-102, January.
    2. D P Ronconi & V A Armentano, 2001. "Lower bounding schemes for flowshops with blocking in-process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(11), pages 1289-1297, November.
    3. Caraffa, Vince & Ianes, Stefano & P. Bagchi, Tapan & Sriskandarajah, Chelliah, 2001. "Minimizing makespan in a blocking flowshop using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 70(2), pages 101-115, March.
    4. Débora Ronconi, 2005. "A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking," Annals of Operations Research, Springer, vol. 138(1), pages 53-65, September.
    5. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    6. Toktas, Berkin & Azizoglu, Meral & Koksalan, Suna Kondakci, 2004. "Two-machine flow shop scheduling with two criteria: Maximum earliness and makespan," European Journal of Operational Research, Elsevier, vol. 157(2), pages 286-295, September.
    7. Selcuk Karabati & Panagiotis Kouvelis, 1996. "Cyclic scheduling in flow lines: Modeling observations, effective heuristics and a cycle time minimization procedure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 211-231, March.
    8. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    9. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    10. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    11. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
    2. Amalia Utamima & Torsten Reiners & Amir H. Ansaripoor, 2022. "Evolutionary neighborhood discovery algorithm for agricultural routing planning in multiple fields," Annals of Operations Research, Springer, vol. 316(2), pages 955-977, September.
    3. Chen-Fu Chien & Chung-Jen Kuo & Chih-Min Yu, 2020. "Tool allocation to smooth work-in-process for cycle time reduction and an empirical study," Annals of Operations Research, Springer, vol. 290(1), pages 1009-1033, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    2. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    3. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    4. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    5. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    6. Ansis Ozolins, 2019. "Improved bounded dynamic programming algorithm for solving the blocking flow shop problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 15-38, March.
    7. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    8. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    9. Carlier, Jacques & Haouari, Mohamed & Kharbeche, Mohamed & Moukrim, Aziz, 2010. "An optimization-based heuristic for the robotic cell problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 636-645, May.
    10. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    11. Donald Davendra & Ivan Zelinka & Magdalena Bialic-Davendra & Roman Senkerik & Roman Jasek, 2012. "Clustered enhanced differential evolution for the blocking flow shop scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 679-717, December.
    12. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.
    13. Grabowski, Jøzef & Pempera, Jaroslaw, 2007. "The permutation flow shop problem with blocking. A tabu search approach," Omega, Elsevier, vol. 35(3), pages 302-311, June.
    14. Débora Ronconi, 2005. "A Branch-and-Bound Algorithm to Minimize the Makespan in a Flowshop with Blocking," Annals of Operations Research, Springer, vol. 138(1), pages 53-65, September.
    15. Delorme, Xavier & Dolgui, Alexandre & Kovalyov, Mikhail Y., 2012. "Combinatorial design of a minimum cost transfer line," Omega, Elsevier, vol. 40(1), pages 31-41, January.
    16. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    17. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    18. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    19. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    20. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:267:y:2018:i:1:d:10.1007_s10479-017-2465-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.