IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i1d10.1007_s10878-021-00840-z.html
   My bibliography  Save this article

Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering

Author

Listed:
  • Richard J. Forrester

    (Dickinson College)

  • Lucas A. Waddell

    (Bucknell University)

Abstract

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.

Suggested Citation

  • Richard J. Forrester & Lucas A. Waddell, 2022. "Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 498-517, August.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00840-z
    DOI: 10.1007/s10878-021-00840-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00840-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00840-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    2. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    3. H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
    4. G. Edward Fox & Norman R. Baker & John L. Bryant, 1984. "Economic Models for R and D Project Selection in the Presence of Project Interactions," Management Science, INFORMS, vol. 30(7), pages 890-902, July.
    5. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    6. repec:grz:wpsses:2014-04 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    2. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    3. Bagloee, Saeed Asadi & Asadi, Mohsen, 2015. "Prioritizing road extension projects with interdependent benefits under time constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 196-216.
    4. Debarun Bhattacharjya & Jo Eidsvik & Tapan Mukerji, 2013. "The Value of Information in Portfolio Problems with Dependent Projects," Decision Analysis, INFORMS, vol. 10(4), pages 341-351, December.
    5. Fernández Carazo, Ana & Gómez Núñez, Trinidad & Guerrero Casas, Flor M. & Caballero Fernández, Rafael, 2008. "Evaluación y clasificación de las técnicas utilizadas por las organizaciones, en las últimas décadas, para seleccionar proyectos = Evaluation and classification of the techniques used by organizations," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 5(1), pages 67-115, June.
    6. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    7. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    8. Santhanam, Radhika & Kyparisis, George J., 1996. "A decision model for interdependent information system project selection," European Journal of Operational Research, Elsevier, vol. 89(2), pages 380-399, March.
    9. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
    10. Mikhail Timonin, 2012. "Maximization of the Choquet integral over a convex set and its application to resource allocation problems," Annals of Operations Research, Springer, vol. 196(1), pages 543-579, July.
    11. Alain Billionnet & Éric Soutif, 2004. "Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 188-197, May.
    12. Richard J. Forrester & Warren P. Adams & Paul T. Hadavas, 2010. "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 1-12, February.
    13. Medaglia, Andres L. & Graves, Samuel B. & Ringuest, Jeffrey L., 2007. "A multiobjective evolutionary approach for linearly constrained project selection under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 869-894, June.
    14. Kyparisis, George J. & Gupta, Sushil K. & Ip, Chi-Ming, 1996. "Project selection with discounted returns and multiple constraints," European Journal of Operational Research, Elsevier, vol. 94(1), pages 87-96, October.
    15. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    16. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    17. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    18. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    19. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    20. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00840-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.