IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v52y2005i2p178-192.html
   My bibliography  Save this article

Optimal power control in a wireless network using a model with stochastic link coefficients

Author

Listed:
  • T. Heikkinen
  • A. Prékopa

Abstract

This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005

Suggested Citation

  • T. Heikkinen & A. Prékopa, 2005. "Optimal power control in a wireless network using a model with stochastic link coefficients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(2), pages 178-192, March.
  • Handle: RePEc:wly:navres:v:52:y:2005:i:2:p:178-192
    DOI: 10.1002/nav.20054
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20054
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joe Naoum‐Sawaya & Samir Elhedhli, 2010. "A nested benders decomposition approach for telecommunication network planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 519-539, September.
    2. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    2. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    3. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    4. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    5. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    6. Adi Ben-Israel & Aharon Ben-Tal, 1997. "Duality and equilibrium prices in economics of uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 51-85, February.
    7. Garoian, Lee & Conner, J. Richard & Scifres, C.J., 1987. "A Discrete Stochastic Programming Model To Estimate Optimal Burning Schedules On Rangeland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-8, December.
    8. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    9. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    10. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    11. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    12. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    13. repec:dgr:rugsom:03a14 is not listed on IDEAS
    14. John Bistline & John Weyant, 2013. "Electric sector investments under technological and policy-related uncertainties: a stochastic programming approach," Climatic Change, Springer, vol. 121(2), pages 143-160, November.
    15. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    16. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    17. Andrea Beltratti & Andrea Consiglio & Stavros Zenios, 1999. "Scenario modeling for the management ofinternational bond portfolios," Annals of Operations Research, Springer, vol. 85(0), pages 227-247, January.
    18. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    19. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    20. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.
    21. Bora Tarhan & Ignacio Grossmann & Vikas Goel, 2013. "Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution," Annals of Operations Research, Springer, vol. 203(1), pages 141-166, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:52:y:2005:i:2:p:178-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.