IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i3p593-615.html
   My bibliography  Save this article

Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach

Author

Listed:
  • Wang, Chong
  • Wang, Qi
  • Xiang, Xi
  • Zhang, Canrong
  • Miao, Lixin

Abstract

In this research, we have formulated a Two-Stage Distributionally Robust Optimization (TDRO) model within the context of a mean–variance ambiguity set, specifically designed to address the challenges in the Integrated Berth Allocation and Quay Crane Assignment Problem (BACAP). A key consideration in this study is the inherent uncertainty associated with ships’ arrival times. During the initial stage, we derive a baseline schedule governing berth allocation and quay crane assignment. Anticipating potential disruptions arising from uncertain arrival delays, the second stage is meticulously formulated to determine the worst-case expectation of adjustment costs within the mean–variance ambiguity set. Subsequently, we undertake an equivalent transformation, converting the general TDRO model into a Two-Stage Robust Second-Order Cone Programming (TRO-SOCP) model. This transformation facilitates the application of the Column and Constraint Generation (C&CG) algorithm, ensuring the derivation of an exact solution. To address the computational intricacies associated with second-order cone programming, we propose two enhancement strategies for upper and lower bounds, aimed at expediting the solution process. Additionally, to contend with large-scale instances, we introduce a refinement and approximation method, transforming the TDRO model into a Mixed-Integer Programming (MIP) model. Furthermore, extensive numerical experiments are executed on both synthetic and real-life instances to validate the superior performance of our model and algorithms. In terms of the total cost, the TDRO model demonstrates superior performance compared with Two-Stage Stochastic Programming (TSP) and Two-Stage Robust Optimization (TRO) models.

Suggested Citation

  • Wang, Chong & Wang, Qi & Xiang, Xi & Zhang, Canrong & Miao, Lixin, 2025. "Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 320(3), pages 593-615.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:3:p:593-615
    DOI: 10.1016/j.ejor.2024.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724006015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:3:p:593-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.