IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v47y2000i5p455-458.html
   My bibliography  Save this article

Note: Remarks on theory of the core

Author

Listed:
  • Chih Chang

Abstract

This note proposes a necessary and sufficient condition for the existence of an undominated core and a necessary and sufficient condition for coincidence of the intersection core and the undominated core. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 455–458, 2000

Suggested Citation

  • Chih Chang, 2000. "Note: Remarks on theory of the core," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 455-458, August.
  • Handle: RePEc:wly:navres:v:47:y:2000:i:5:p:455-458
    DOI: 10.1002/1520-6750(200008)47:53.0.CO;2-D
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(200008)47:53.0.CO;2-D
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(200008)47:53.0.CO;2-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rafels, C. & Tijs, S.H., 1997. "On the cores of cooperative games and the stability of the Weber set," Other publications TiSEM 14435da8-14ce-4845-8e54-4, Tilburg University, School of Economics and Management.
    2. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2002. "On Cores and Stable Sets for Fuzzy Games," Other publications TiSEM 574e2ed7-34ee-4d97-a289-0, Tilburg University, School of Economics and Management.
    2. Yan-An Hwang & Yu-Hsien Liao, 2023. "Non-Emptiness, Relative Coincidences and Axiomatic Results for the Precore," Mathematics, MDPI, vol. 11(13), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2002. "On Cores and Stable Sets for Fuzzy Games," Other publications TiSEM 574e2ed7-34ee-4d97-a289-0, Tilburg University, School of Economics and Management.
    2. Gonzalez, Stéphane & Rostom, Fatma Zahra, 2022. "Sharing the global outcomes of finite natural resource exploitation: A dynamic coalitional stability perspective," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 1-10.
    3. Judith Timmer & Werner Scheinhardt, 2018. "Customer and Cost Sharing in a Jackson Network," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-10, September.
    4. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    5. Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2023. "Axiomatic characterizations of the core without consistency," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 687-701, September.
    6. Aymeric Lardon, 2019. "On the coalitional stability of monopoly power in differentiated Bertrand and Cournot oligopolies," Theory and Decision, Springer, vol. 87(4), pages 421-449, November.
    7. Stéphane Gonzalez & Michel Grabisch, 2015. "Autonomous coalitions," Annals of Operations Research, Springer, vol. 235(1), pages 301-317, December.
    8. Pedro Calleja & Francesc Llerena & Peter Sudhölter, 2020. "Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1056-1068, August.
    9. Alparslan-Gok, S.Z. & Miquel, S. & Tijs, S.H., 2008. "Cooperation under Interval Uncertainty," Other publications TiSEM 9a01bd57-964d-4e71-8508-7, Tilburg University, School of Economics and Management.
    10. Toru Hokari & Yukihiko Funaki & Peter Sudhölter, 2020. "Consistency, anonymity, and the core on the domain of convex games," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 187-197, December.
    11. Gonzalez, Stéphane & Grabisch, Michel, 2016. "Multicoalitional solutions," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 1-10.
    12. Michel Grabisch & Peter Sudhölter, 2012. "The bounded core for games with precedence constraints," Annals of Operations Research, Springer, vol. 201(1), pages 251-264, December.
    13. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.
    14. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2017. "The procedural egalitarian solution," Games and Economic Behavior, Elsevier, vol. 106(C), pages 179-187.
    15. Frank Karsten & Marco Slikker & Geert‐Jan van Houtum, 2012. "Inventory pooling games for expensive, low‐demand spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 311-324, August.
    16. Ma, Jinpeng, 1998. "Competitive Equilibrium with Indivisibilities," Journal of Economic Theory, Elsevier, vol. 82(2), pages 458-468, October.
    17. Dénes Pálvölgyi & Hans Peters & Dries Vermeulen, 2018. "Linearity of the core correspondence," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1159-1167, November.
    18. David Pérez-Castrillo & Marilda Sotomayor, 2023. "Constrained-optimal tradewise-stable outcomes in the one-sided assignment game: a solution concept weaker than the core," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(3), pages 963-994, October.
    19. Josep Maria Izquierdo Aznar & Carlos Rafels Pallarola, 2002. "Coalitionally Monotonic Set-solutions for Cooperative TU Games," Working Papers in Economics 75, Universitat de Barcelona. Espai de Recerca en Economia.
    20. Jean Guillaume Forand & Metin Uyanık, 2019. "Fixed-point approaches to the proof of the Bondareva–Shapley Theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 117-124, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:47:y:2000:i:5:p:455-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.