IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2018_004.html
   My bibliography  Save this paper

Monotonicity and weighted prenucleoli: A characterization without consistency

Author

Listed:
  • Calleja, Pedro

    (Departament de Matematica Economica, Financera i Actuarial)

  • Llerena, Francesc

    (Departament de Gestió d'Empreses)

  • Sudhölter, Peter

    (Department of Business and Economics)

Abstract

A solution on a set of transferable utility (TU) games satisfies strong aggregate monotonicity (SAM) if every player can improve when the grand coalition becomes richer. It satisfies equal surplus division (ESD) if the solution allows the players to improve equally. We show that the set of weight systems generating weighted prenucleoli that satisfy SAM is open which implies that for weight systems close enough to any regular system the weighted prenucleolus satisfies SAM. We also provide a necessary condition for SAM for symmetrically weighted nucleoli. Moreover, we show that the per capita nucleolus on balanced games is characterized by single-valuedness (SIVA), translation and scale covariance (COV), and equal adjusted surplus division (EASD), a property that is comparable but stronger than ESD. These properties together with ESD characterize the per capita prenucleolus on larger sets of TU games. EASD and ESD can be transformed to independence of (adjusted) proportional shifting and these properties may be generalized for arbitrary weight systems p to I(A)Sp. We show that the p-weighted prenucleolus on the set of balanced TU games is characterized by SIVA, COV, and IASp; and on larger sets by additionally requiring ISp.

Suggested Citation

  • Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2018. "Monotonicity and weighted prenucleoli: A characterization without consistency," Discussion Papers on Economics 4/2018, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2018_004
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2018/dpbe4_2018.pdf?la=da&hash=0B179C4B3FC148588778EB9316A234C286B1E8E9
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Housman & (*), Lori Clark, 1998. "Note Core and monotonic allocation methods," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 611-616.
    2. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    3. Orshan, Gooni, 1993. "The Prenucleolus and the Reduced Game Property: Equal Treatment Replaces Anonymity," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(3), pages 241-248.
    4. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Toru Hokari, 2000. "note: The nucleolus is not aggregate-monotonic on the domain of convex games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 133-137.
    6. John Kleppe & Hans Reijnierse & Peter Sudhölter, 2016. "Axiomatizations of symmetrically weighted solutions," Annals of Operations Research, Springer, vol. 243(1), pages 37-53, August.
    7. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Calleja & Francesc Llerena & Peter Sudhölter, 2020. "Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1056-1068, August.
    2. Guni Orshan & Peter Sudhölter, 2012. "Nonsymmetric variants of the prekernel and the prenucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 809-828, November.
    3. Pedro Calleja & Carles Rafels & Stef Tijs, 2006. "The Aggregate-Monotonic Core," Working Papers 280, Barcelona School of Economics.
    4. Calleja, Pere & Llerena Garrés, Francesc, 2016. "Consistency distinguishes the (weighted) Shapley value, the (weighted) surplus division value and the prenucleolus," Working Papers 2072/266577, Universitat Rovira i Virgili, Department of Economics.
    5. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    6. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
    7. John Kleppe & Hans Reijnierse & Peter Sudhölter, 2016. "Axiomatizations of symmetrically weighted solutions," Annals of Operations Research, Springer, vol. 243(1), pages 37-53, August.
    8. Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Estela Sánchez-Rodríguez, 2021. "Considerations on the aggregate monotonicity of the nucleolus and the core-center," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 291-325, April.
    9. Dietzenbacher, Bas, 2020. "Monotonicity and Egalitarianism (revision of CentER DP 2019-007)," Other publications TiSEM 295f156e-91ad-4177-b61a-1, Tilburg University, School of Economics and Management.
    10. Guni Orshan & Peter Sudhölter, 2003. "Reconfirming the Prenucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 283-293, May.
    11. Gooni Orshan & Peter Sudholter, 2001. "Reconfirming the Prenucleolus," Discussion Paper Series dp267, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    12. Rogna, Marco, 2021. "The central core and the mid-central core as novel set-valued and point-valued solution concepts for transferable utility coalitional games," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 1-11.
    13. Pedro Calleja & Francesc Llerena, 2019. "Path monotonicity, consistency and axiomatizations of some weighted solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 287-310, March.
    14. Dietzenbacher, Bas, 2021. "Monotonicity and egalitarianism," Games and Economic Behavior, Elsevier, vol. 127(C), pages 194-205.
    15. Pedro Calleja & Carles Rafels & Stef Tijs, 2010. "Aggregate monotonic stable single-valued solutions for cooperative games," Working Papers in Economics 237, Universitat de Barcelona. Espai de Recerca en Economia.
    16. Hokari, Toru, 2005. "Consistency implies equal treatment in TU-games," Games and Economic Behavior, Elsevier, vol. 51(1), pages 63-82, April.
    17. Katsev, Ilya & Yanovskaya, Elena, 2013. "The prenucleolus for games with restricted cooperation," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 56-65.
    18. Calleja, Pere & Llerena Garrés, Francesc, 2015. "On the (in)compatibility of rationality, monotonicity and consistency for cooperative games," Working Papers 2072/247807, Universitat Rovira i Virgili, Department of Economics.
    19. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.
    20. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.

    More about this item

    Keywords

    TU games; weighted prenucleolus; equal surplus division;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2018_004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.