IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v46y1999i2p199-211.html
   My bibliography  Save this article

A genetic algorithm methodology for complex scheduling problems

Author

Listed:
  • Bryan A. Norman
  • James C. Bean

Abstract

This paper considers the scheduling problem to minimize total tardiness given multiple machines, ready times, sequence dependent setups, machine downtime and scarce tools. We develop a genetic algorithm based on random keys representation, elitist reproduction, Bernoulli crossover and immigration type mutation. Convergence of the algorithm is proved. We present computational results on data sets from the auto industry. To demonstrate robustness of the approach, problems from the literature of different structure are solved by essentially the same algorithm. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 199–211, 1999

Suggested Citation

  • Bryan A. Norman & James C. Bean, 1999. "A genetic algorithm methodology for complex scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(2), pages 199-211, March.
  • Handle: RePEc:wly:navres:v:46:y:1999:i:2:p:199-211
    DOI: 10.1002/(SICI)1520-6750(199903)46:23.0.CO;2-L
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199903)46:23.0.CO;2-L
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199903)46:23.0.CO;2-L?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James C. Bean & John R. Birge & John Mittenthal & Charles E. Noon, 1991. "Matchup Scheduling with Multiple Resources, Release Dates and Disruptions," Operations Research, INFORMS, vol. 39(3), pages 470-483, June.
    2. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    3. Grabowski, J. & Nowicki, E. & Zdrzalka, S., 1986. "A block approach for single-machine scheduling with release dates and due dates," European Journal of Operational Research, Elsevier, vol. 26(2), pages 278-285, August.
    4. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    5. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    6. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    7. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongmin Li & Woonghee T. Huh & Matheus C. Sampaio & Naiping Keng, 2021. "Planning Production and Equipment Qualification under High Process Flexibility," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3369-3390, October.
    2. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    3. Alice E. Smith, 2023. "Note from the Editor," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 711-712, July.
    4. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    3. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    6. Joao António Noivo & Helena Ramalhinho-Lourenço, 1998. "Solving two production scheduling problems with sequence-dependent set-up times," Economics Working Papers 338, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Salewski, Frank & Bartsch, Thomas, 1994. "A comparison of genetic and greedy randomized algorithms for medium-to-short-term audit-staff scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 356, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    9. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    10. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    12. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    13. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    14. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    15. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    16. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
    17. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    18. Susana Fernandes & Helena Ramalhinho-Lourenço, 2007. "A simple optimised search heuristic for the job-shop scheduling problem," Economics Working Papers 1050, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Murovec, Boštjan, 2015. "Job-shop local-search move evaluation without direct consideration of the criterion’s value," European Journal of Operational Research, Elsevier, vol. 241(2), pages 320-329.
    20. Andreas Schirmer, 2000. "Case‐based reasoning and improved adaptive search for project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 201-222, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:46:y:1999:i:2:p:199-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.