IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v37y1990i2p299-307.html
   My bibliography  Save this article

An analysis of six greedy selection rules on a class of zero‐one integer programming models

Author

Listed:
  • G. Edward Fox
  • Christopher J. Nachtsheim

Abstract

Six greedy primal selection rules are evaluated on a class of generalized set packing models. The evaluation is conducted in accordance with experimental design methodologies proposed by Lin and Rardin. Results indicate that the simplest of rules performs best, except when the model constraints exhibit “mixed” slackness. In this case, the rule proposed earlier by Fox and Scudder performs best. The results clarify and add detail to previous work by Fox and Scudder.

Suggested Citation

  • G. Edward Fox & Christopher J. Nachtsheim, 1990. "An analysis of six greedy selection rules on a class of zero‐one integer programming models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(2), pages 299-307, April.
  • Handle: RePEc:wly:navres:v:37:y:1990:i:2:p:299-307
    DOI: 10.1002/1520-6750(199004)37:23.0.CO;2-M
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199004)37:23.0.CO;2-M
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199004)37:23.0.CO;2-M?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshiaki Toyoda, 1975. "A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems," Management Science, INFORMS, vol. 21(12), pages 1417-1427, August.
    2. Shizuo Senju & Yoshiaki Toyoda, 1968. "An Approach to Linear Programming with 0-1 Variables," Management Science, INFORMS, vol. 15(4), pages 196-207, December.
    3. G. Edward Fox & Gary D. Scudder, 1985. "A heuristic with tie breaking for certain 0–1 integer programming models," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(4), pages 613-623, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    2. Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    3. Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
    4. Yalçin Akçay & Susan H. Xu, 2004. "Joint Inventory Replenishment and Component Allocation Optimization in an Assemble-to-Order System," Management Science, INFORMS, vol. 50(1), pages 99-116, January.
    5. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.
    6. Oliver Bastert & Benjamin Hummel & Sven de Vries, 2010. "A Generalized Wedelin Heuristic for Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 93-107, February.
    7. Dimitris Bertsimas & Ramazan Demir, 2002. "An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems," Management Science, INFORMS, vol. 48(4), pages 550-565, April.
    8. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    9. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    10. N. Cherfi & M. Hifi, 2010. "A column generation method for the multiple-choice multi-dimensional knapsack problem," Computational Optimization and Applications, Springer, vol. 46(1), pages 51-73, May.
    11. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
    12. Louis Anthony (Tony) Cox, Jr., 2012. "Evaluating and Improving Risk Formulas for Allocating Limited Budgets to Expensive Risk‐Reduction Opportunities," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1244-1252, July.
    13. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    14. Jaeyoung Yang & Yong-Hyuk Kim & Yourim Yoon, 2022. "A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    15. Cemal AKTÜRK & Sevinç GÜLSEÇEN, 2018. "Sipariş Teslim Tarihi Problemi İçin Çok Kriterli ve Çok Yöntemli Karar Destek Sistemi Önerisi," Istanbul Management Journal, Istanbul University Business School, vol. 29(84), pages 65-78, June.
    16. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    17. Bahram Alidaee & Vijay P. Ramalingam & Haibo Wang & Bryan Kethley, 2018. "Computational experiment of critical event tabu search for the general integer multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 269(1), pages 3-19, October.
    18. Ang, James S.K. & Cao, Chengxuan & Ye, Heng-Qing, 2007. "Model and algorithms for multi-period sea cargo mix problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1381-1393, August.
    19. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    20. Hasan Pirkul, 1987. "A heuristic solution procedure for the multiconstraint zero‐one knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 161-172, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:37:y:1990:i:2:p:299-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.