An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.48.4.550.208
Download full text from publisher
References listed on IDEAS
- Frieze, A. M. & Clarke, M. R. B., 1984. "Approximation algorithms for the m-dimensional 0-1 knapsack problem: Worst-case and probabilistic analyses," European Journal of Operational Research, Elsevier, vol. 15(1), pages 100-109, January.
- Freville, A. & Plateau, G., 1986. "Heuristics and reduction methods for multiple constraints 0-1 linear programming problems," European Journal of Operational Research, Elsevier, vol. 24(2), pages 206-215, February.
- M. E. Dyer & A. M. Frieze, 1989. "Probabilistic Analysis of the Multidimensional Knapsack Problem," Mathematics of Operations Research, INFORMS, vol. 14(1), pages 162-176, February.
- P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
- Yoshiaki Toyoda, 1975. "A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems," Management Science, INFORMS, vol. 21(12), pages 1417-1427, August.
- Shizuo Senju & Yoshiaki Toyoda, 1968. "An Approach to Linear Programming with 0-1 Variables," Management Science, INFORMS, vol. 15(4), pages 196-207, December.
- Lokketangen, Arne & Glover, Fred, 1998. "Solving zero-one mixed integer programming problems using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 624-658, April.
- H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
- Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
- Sven de Vries & Rakesh Vohra, 2000. "Combinatorial Auctions: A Survey," Discussion Papers 1296, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Magazine, M. J. & Oguz, Osman, 1984. "A heuristic algorithm for the multidimensional zero-one knapsack problem," European Journal of Operational Research, Elsevier, vol. 16(3), pages 319-326, June.
- Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
- Jae Sik Lee & Monique Guignard, 1988. "Note---An Approximate Algorithm for Multidimensional Zero-One Knapsack Problems---A Parametric Approach," Management Science, INFORMS, vol. 34(3), pages 402-410, March.
- Szkatula, Krzysztof, 1994. "The growth of multi-constraint random knapsacks with various right-hand sides of the constraints," European Journal of Operational Research, Elsevier, vol. 73(1), pages 199-204, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Younsoo & Lee, Kyungsik, 2022. "New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 302(1), pages 230-243.
- Markus Frey & Rainer Kolisch & Christian Artigues, 2017. "Column Generation for Outbound Baggage Handling at Airports," Transportation Science, INFORMS, vol. 51(4), pages 1226-1241, November.
- Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
- Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
- Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
- Yang, Xinan & Vernitski, Alexei & Carrea, Laura, 2016. "An approximate dynamic programming approach for improving accuracy of lossy data compression by Bloom filters," European Journal of Operational Research, Elsevier, vol. 252(3), pages 985-994.
- Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
- Goodson, Justin C. & Thomas, Barrett W. & Ohlmann, Jeffrey W., 2017. "A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 216-229.
- Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.
- Dragos Florin Ciocan & Vivek Farias, 2012. "Model Predictive Control for Dynamic Resource Allocation," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 501-525, August.
- Ulmer, Marlin W. & Soeffker, Ninja & Mattfeld, Dirk C., 2018. "Value function approximation for dynamic multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 883-899.
- Selvaprabu Nadarajah & Andre A. Cire, 2020. "Network-Based Approximate Linear Programming for Discrete Optimization," Operations Research, INFORMS, vol. 68(6), pages 1767-1786, November.
- E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
- Justin C. Goodson & Jeffrey W. Ohlmann & Barrett W. Thomas, 2013. "Rollout Policies for Dynamic Solutions to the Multivehicle Routing Problem with Stochastic Demand and Duration Limits," Operations Research, INFORMS, vol. 61(1), pages 138-154, February.
- Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
- Alena Otto & Xiyu Li & Erwin Pesch, 2017. "Two-Way Bounded Dynamic Programming Approach for Operations Planning in Transshipment Yards," Transportation Science, INFORMS, vol. 51(1), pages 325-342, February.
- Luca Bertazzi, 2012. "Minimum and Worst-Case Performance Ratios of Rollout Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 378-393, February.
- Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
- Ridvan Gedik & Shengfan Zhang & Chase Rainwater, 2017. "Strategic level proton therapy patient admission planning: a Markov decision process modeling approach," Health Care Management Science, Springer, vol. 20(2), pages 286-302, June.
- Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
- Deane, Jason & Agarwal, Anurag, 2012. "Scheduling online advertisements to maximize revenue under variable display frequency," Omega, Elsevier, vol. 40(5), pages 562-570.
- Marco A. Boschetti & Vittorio Maniezzo & Matteo Roffilli, 2011. "A Fully Distributed Lagrangean Solution for a Peer-to-Peer Overlay Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 90-104, February.
- Enrique Garza-Escalante & Arturo de la Torre, 2015. "Nacional Monte de Piedad Uses a Novel Social-Value Measure for Allocating Grants Among Charities," Interfaces, INFORMS, vol. 45(6), pages 514-528, December.
- ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
- Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
- Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
- Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
- Balev, Stefan & Yanev, Nicola & Freville, Arnaud & Andonov, Rumen, 2008. "A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 63-76, April.
- Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
- Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
- Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
- Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
- Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
- Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
- Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
- Yalçin Akçay & Susan H. Xu, 2004. "Joint Inventory Replenishment and Component Allocation Optimization in an Assemble-to-Order System," Management Science, INFORMS, vol. 50(1), pages 99-116, January.
- Lin, Feng-Tse & Yao, Jing-Shing, 2001. "Using fuzzy numbers in knapsack problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 158-176, November.
- Oliver Bastert & Benjamin Hummel & Sven de Vries, 2010. "A Generalized Wedelin Heuristic for Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 93-107, February.
- Raymond R. Hill & Charles H. Reilly, 2000. "The Effects of Coefficient Correlation Structure in Two-Dimensional Knapsack Problems on Solution Procedure Performance," Management Science, INFORMS, vol. 46(2), pages 302-317, February.
- Lee, Tae-Eog & Oh, Geun Tae, 1997. "The asymptotic value-to-capacity ratio for the multi-class stochastic knapsack problem," European Journal of Operational Research, Elsevier, vol. 103(3), pages 584-594, December.
- G. Edward Fox & Christopher J. Nachtsheim, 1990. "An analysis of six greedy selection rules on a class of zero‐one integer programming models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(2), pages 299-307, April.
- Bahram Alidaee & Vijay P. Ramalingam & Haibo Wang & Bryan Kethley, 2018. "Computational experiment of critical event tabu search for the general integer multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 269(1), pages 3-19, October.
- Kunikazu Yoda & András Prékopa, 2016. "Convexity and Solutions of Stochastic Multidimensional 0-1 Knapsack Problems with Probabilistic Constraints," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 715-731, May.
- Szkatula, Krzysztof, 1998. "Random sequencing jobs with deadlines problem: Growth of the optimal solution values," European Journal of Operational Research, Elsevier, vol. 109(1), pages 160-169, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:48:y:2002:i:4:p:550-565. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.