IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v39y2019i10p1214-1227.html
   My bibliography  Save this article

A dimension‐invariant cascade model for VIX futures

Author

Listed:
  • Zhiguang Wang
  • Brice Dupoyet

Abstract

We propose a new stochastic volatility model by allowing for a cascading structure of volatility components. The model, under a minor assumption, allows us to add as many components as desired with no additional parameters, effectively defeating the curse of dimensionality often encountered in traditional models. We derive a semi‐closed‐form solution to the VIX futures price, and find that our six‐factor model with only six parameters can closely fit spot VIX and VIX futures prices from 2004 to 2015 and produce out‐of‐sample pricing errors of magnitudes similar to those of in‐sample errors.

Suggested Citation

  • Zhiguang Wang & Brice Dupoyet, 2019. "A dimension‐invariant cascade model for VIX futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1214-1227, October.
  • Handle: RePEc:wly:jfutmk:v:39:y:2019:i:10:p:1214-1227
    DOI: 10.1002/fut.22042
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22042
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    2. Yueh‐Neng Lin, 2007. "Pricing VIX futures: Evidence from integrated physical and risk‐neutral probability measures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(12), pages 1175-1217, December.
    3. Xingguo Luo & Jin E. Zhang, 2012. "The Term Structure of VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(12), pages 1092-1123, December.
    4. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    5. Yingzi Zhu & Jin E. Zhang, 2007. "Variance Term Structure And Vix Futures Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 111-127.
    6. Peter Carr & Liuren Wu, 2010. "Stock Options and Credit Default Swaps: A Joint Framework for Valuation and Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 409-449, Fall.
    7. Jin E. Zhang & Yuqin Huang, 2010. "The CBOE S&P 500 three‐month variance futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(1), pages 48-70, January.
    8. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    9. Jin E. Zhang & Jinghong Shu & Menachem Brenner, 2010. "The new market for volatility trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(9), pages 809-833, September.
    10. Egloff, Daniel & Leippold, Markus & Wu, Liuren, 2010. "The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(5), pages 1279-1310, October.
    11. Zhongjin Lu & Yingzi Zhu, 2010. "Volatility components: The term structure dynamics of VIX futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(3), pages 230-256, March.
    12. Calvet, Laurent E. & Fisher, Adlai J. & Wu, Liuren, 2018. "Staying on Top of the Curve: A Cascade Model of Term Structure Dynamics," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(2), pages 937-963, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    2. Sebastian A. Gehricke & Jin E. Zhang, 2020. "Modeling VXX under jump diffusion with stochastic long‐term mean," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1508-1534, October.
    3. Eraker, Bjørn & Wang, Jiakou, 2015. "A non-linear dynamic model of the variance risk premium," Journal of Econometrics, Elsevier, vol. 187(2), pages 547-556.
    4. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    5. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    6. Zhe Zhao & Zhenyu Cui & Ionuţ Florescu, 2018. "VIX derivatives valuation and estimation based on closed-form series expansions," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-18, June.
    7. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    8. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Kai‐Jiun Chang & Mao‐Wei Hung & Yaw‐Huei Wang & Kuang‐Chieh Yen, 2019. "Volatility information implied in the term structure of VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 56-71, January.
    10. Sebastian A. Gehricke & Jin E. Zhang, 2018. "Modeling VXX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(8), pages 958-976, August.
    11. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    12. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2020. "Pricing VIX derivatives with infinite‐activity jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 329-354, March.
    13. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    14. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    15. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    16. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    17. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    18. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    19. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    20. Zhuo Huang & Chen Tong & Tianyi Wang, 2019. "VIX term structure and VIX futures pricing with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 72-93, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:39:y:2019:i:10:p:1214-1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.