IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i6p1113-1132.html
   My bibliography  Save this article

Are missing values important for earnings forecasts? A machine learning perspective

Author

Listed:
  • Ajim Uddin
  • Xinyuan Tao
  • Chia-Ching Chou
  • Dantong Yu

Abstract

Analysts' forecasts are one of the most common and important estimators for firms' future earnings. However, they are challenging to fully utilize because of missing values. This study applies machine learning techniques to estimate missing values in individual analysts' forecasts and subsequently to predict firms' future earnings based on both estimated and observed forecasts. After estimating missing values, forecast error is reduced by 41% compared to the mean forecast, suggesting that missing values after estimating are indeed useful for earnings forecasts. We analyze multiple estimation methods and show that the out-performance of matrix factorization (MF) is consistent using different evaluation measures and across firms. Finally, we propose a stochastic gradient descent based coupled matrix factorization (CMF) to augment the estimation quality of missing values with multiple datasets. CMF further reduces the error of earnings forecasts by 19% compared to MF with a single dataset.

Suggested Citation

  • Ajim Uddin & Xinyuan Tao & Chia-Ching Chou & Dantong Yu, 2022. "Are missing values important for earnings forecasts? A machine learning perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(6), pages 1113-1132, June.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1113-1132
    DOI: 10.1080/14697688.2021.1963825
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2021.1963825
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2021.1963825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
    2. Junyi Ye & Bhaskar Goswami & Jingyi Gu & Ajim Uddin & Guiling Wang, 2024. "From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing," Papers 2403.06779, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:6:p:1113-1132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.