IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v84y2020icp165-176.html
   My bibliography  Save this article

Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets

Author

Listed:
  • Zoričák, Martin
  • Gnip, Peter
  • Drotár, Peter
  • Gazda, Vladimír

Abstract

Bankruptcy prediction is still important topic receiving notable attention. Information about an imminent bankruptcy threat is a crucial aspect of the decision-making process of managers, financial institutions, and government agencies. In this paper, we utilize a newly acquired dataset comprising financial parameters derived from the annual reports of small- and medium-sized companies. The data, which reveal the true ratio between bankrupt and non-bankrupt companies, are severely imbalanced and only contain a small fraction of bankrupt companies. Our solution to overcome this challenging scenario of imbalanced learning was to adopt three one-class classification methods: a least-squares approach to anomaly detection, an isolation forest, and one-class support vector machines for comparison with conventional support vector machines. We provide a comprehensive analysis of the financial attributes and identify those that are most relevant to bankruptcy prediction. The highest prediction performance in terms of the geometric mean score is 91%. The results are validated on two datasets from the manufacturing and construction industries.

Suggested Citation

  • Zoričák, Martin & Gnip, Peter & Drotár, Peter & Gazda, Vladimír, 2020. "Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets," Economic Modelling, Elsevier, vol. 84(C), pages 165-176.
  • Handle: RePEc:eee:ecmode:v:84:y:2020:i:c:p:165-176
    DOI: 10.1016/j.econmod.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999318315438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Z. R. & Platt, Marjorie B. & Platt, Harlan D., 1999. "Probabilistic Neural Networks in Bankruptcy Prediction," Journal of Business Research, Elsevier, vol. 44(2), pages 67-74, February.
    2. Perera, Dinuja & Chand, Parmod, 2015. "Issues in the adoption of international financial reporting standards (IFRS) for small and medium-sized enterprises (SMES)," Advances in accounting, Elsevier, vol. 31(1), pages 165-178.
    3. Li, Hui & Sun, Jie, 2012. "Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples – Evidence from the Chinese hotel industry," Tourism Management, Elsevier, vol. 33(3), pages 622-634.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    6. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    8. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Parmod Chand & Arvind Patel & Michael White, 2015. "Adopting International Financial Reporting Standards for Small and Medium-sized Enterprises," Australian Accounting Review, CPA Australia, vol. 25(2), pages 139-154, June.
    11. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    12. Gerrit Wit & Jan Kok, 2014. "Do small businesses create more jobs? New evidence for Europe," Small Business Economics, Springer, vol. 42(2), pages 283-295, February.
    13. Liao, Jui-Jung & Shih, Ching-Hui & Chen, Tai-Feng & Hsu, Ming-Fu, 2014. "An ensemble-based model for two-class imbalanced financial problem," Economic Modelling, Elsevier, vol. 37(C), pages 175-183.
    14. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophe Schalck & Meryem Yankol-Schalck, 2021. "Predicting French SME failures: new evidence from machine learning techniques," Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
    2. Nabeel Al-Milli & Amjad Hudaib & Nadim Obeid, 2021. "Population Diversity Control of Genetic Algorithm Using a Novel Injection Method for Bankruptcy Prediction Problem," Mathematics, MDPI, vol. 9(8), pages 1-18, April.
    3. Lucia Svabova & Lucia Michalkova & Marek Durica & Elvira Nica, 2020. "Business Failure Prediction for Slovak Small and Medium-Sized Companies," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    4. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    5. Giuseppe Arbia & Vincenzo Nardelli, 2024. "Using Web-Data to Estimate Spatial Regression Models," International Regional Science Review, , vol. 47(2), pages 204-226, March.
    6. Oleksandr Melnychenko, 2020. "Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?," JRFM, MDPI, vol. 13(9), pages 1-19, August.
    7. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    8. Katarina Valaskova & Pavol Durana & Peter Adamko & Jaroslav Jaros, 2020. "Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities," JRFM, MDPI, vol. 13(5), pages 1-16, May.
    9. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    10. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    11. Michaela Staňková, 2023. "Threshold Moving Approach with Logit Models for Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1251-1272, March.
    12. Vadlamani Ravi & Vadlamani Madhav, 2020. "Optimizing the reliability of a bank with Logistic Regression and Particle Swarm Optimization," Papers 2004.11122, arXiv.org.
    13. Antonio Pelaez-Verdet & Pilar Loscertales-Sanchez, 2021. "Key Ratios for Long-Term Prediction of Hotel Financial Distress and Corporate Default: Survival Analysis for an Economic Stagnation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    2. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    3. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Oliver Lukason & Art Andresson, 2019. "Tax Arrears Versus Financial Ratios in Bankruptcy Prediction," JRFM, MDPI, vol. 12(4), pages 1-13, December.
    6. Huang, Chao & Dai, Chong & Guo, Miao, 2015. "A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 431-441.
    7. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    8. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    9. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    10. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    11. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
    12. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    13. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    14. Milagros Vivel-Búa & Rubén Lado-Sestayo & Luis Otero-González, 2016. "Impact of location on the probability of default in the Spanish lodging industry," Tourism Economics, , vol. 22(3), pages 593-607, June.
    15. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    16. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    17. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    18. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    19. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    20. Nasim Nasirpour & Alireza Mazdaki & Esmail Enayati, 2016. "The Investigation and Comparison of the Performance of Heuristic Methods in the Prediction of the Type of Auditor’s Opinion in Firms Accepted in Tehran Stock Exchange," Asian Social Science, Canadian Center of Science and Education, vol. 12(6), pages 148-148, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:84:y:2020:i:c:p:165-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.