IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/97353.html
   My bibliography  Save this paper

Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds

Author

Listed:
  • Fries, Sébastien

Abstract

Noncausal, or anticipative, alpha-stable processes generate trajectories featuring locally explosive episodes akin to speculative bubbles in financial time series data. For (X_t) a two-sided infinite alpha-stable moving average (MA), conditional moments up to integer order four are shown to exist provided (X_t) is anticipative enough. The functional forms of these moments at any forecast horizon under any admissible parameterisation are obtained by extending the literature on arbitrary bivariate alpha-stable random vectors. The dynamics of noncausal processes simplifies during explosive episodes and allows to express ex ante crash odds at any horizon in terms of the MA coefficients and of the tail index alpha. The results are illustrated in a synthetic portfolio allocation framework and an application to the Nasdaq and S&P500 series is provided.

Suggested Citation

  • Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
  • Handle: RePEc:pra:mprapa:97353
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/97353/3/MPRA_paper_97353.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/105770/1/MPRA_paper_105770.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holly, Alberto & Monfort, Alain & Rockinger, Michael, 2011. "Fourth order pseudo maximum likelihood methods," Journal of Econometrics, Elsevier, vol. 162(2), pages 278-293, June.
    2. Alain Hecq & Lenard Lieb & Sean Telg, 2016. "Identification of Mixed Causal-Noncausal Models in Finite Samples," Annals of Economics and Statistics, GENES, issue 123-124, pages 307-331.
    3. Christian Gouriéroux & Joann Jasiak & Alain Monfort, 2016. "Stationary Bubble Equilibria in Rational Expectation Models," Working Papers 2016-31, Centre de Recherche en Economie et Statistique.
    4. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    5. Boudt, Kris & Lu, Wanbo & Peeters, Benedict, 2015. "Higher order comoments of multifactor models and asset allocation," Finance Research Letters, Elsevier, vol. 13(C), pages 225-233.
    6. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    7. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    8. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    9. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    10. Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2017. "Testing for fundamental vector moving average representations," Quantitative Economics, Econometric Society, vol. 8(1), pages 149-180, March.
    11. Blasques, Francisco & Koopman, Siem Jan & Nientker, Marc, 2022. "A time-varying parameter model for local explosions," Journal of Econometrics, Elsevier, vol. 227(1), pages 65-84.
    12. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    13. M.‐O. Boldi & A. C. Davison, 2007. "A mixture model for multivariate extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 217-229, April.
    14. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    15. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    16. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    17. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    18. Gourieroux, C. & Jasiak, J. & Monfort, A., 2020. "Stationary bubble equilibria in rational expectation models," Journal of Econometrics, Elsevier, vol. 218(2), pages 714-735.
    19. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    20. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    21. Cioczek-Georges, Renata & Taqqu, Murad S., 1995. "Necessary conditions for the existence of conditional moments of stable random variables," Stochastic Processes and their Applications, Elsevier, vol. 56(2), pages 233-246, April.
    22. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    23. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    24. Karcher, Wolfgang & Shmileva, Elena & Spodarev, Evgeny, 2013. "Extrapolation of stable random fields," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 516-536.
    25. Samorodnitsky, Gennady & Taqqu, Murad S., 1991. "Conditional moments and linear regression for stable random variables," Stochastic Processes and their Applications, Elsevier, vol. 39(2), pages 183-199, December.
    26. Cioczek-Georges, Renata & Taqqu, Murad S., 1994. "How do conditional moments of stable vectors depend on the spectral measure?," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 95-111, November.
    27. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    28. J. L. Wadsworth & J. A. Tawn & A. C. Davison & D. M. Elton, 2017. "Modelling across extremal dependence classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 149-175, January.
    29. Christian Gouriéroux & Jean-Michel Zakoïan, 2017. "Local explosion modelling by non-causal process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 737-756, June.
    30. Henri Nyberg & Markku Lanne & Erkka Saarinen, 2012. "Does noncausality help in forecasting economic time series?," Economics Bulletin, AccessEcon, vol. 32(4), pages 2849-2859.
    31. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.
    32. Samuel G. Hanson & Anil K. Kashyap & Jeremy C. Stein, 2011. "A Macroprudential Approach to Financial Regulation," Journal of Economic Perspectives, American Economic Association, vol. 25(1), pages 3-28, Winter.
    33. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    34. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    35. repec:hal:journl:peer-00815562 is not listed on IDEAS
    36. Miller, Grady, 1978. "Properties of certain symmetric stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 346-360, September.
    37. Cambanis, Stamatis & Wu, Wei, 1992. "Multiple regression on stable vectors," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 243-272, May.
    38. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    39. Carlos Gonz�lez-Pedraz & Manuel Moreno & Juan Ignacio Pe�a, 2015. "Portfolio selection with commodities under conditional copulas and skew preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 151-170, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    2. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    3. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Gabriele Mingoli, 2024. "Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model," Tinbergen Institute Discussion Papers 24-072/III, Tinbergen Institute.
    6. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    7. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    8. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    9. F. Blasques & S.J. Koopman & G. Mingoli & S. Telg, 2024. "A Novel Test for the Presence of Local Explosive Dynamics," Tinbergen Institute Discussion Papers 24-036/III, Tinbergen Institute.
    10. Hecq, Alain & Issler, João Victor & Telg, Sean, 2017. "Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors," MPRA Paper 80767, University Library of Munich, Germany.
    11. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    12. Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
    13. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    14. Gianluca Cubadda & Alain Hecq & Sean Telg, 2019. "Detecting Co‐Movements in Non‐Causal Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 697-715, June.
    15. Weifeng Jin, 2023. "Quantile Autoregression-based Non-causality Testing," Papers 2301.02937, arXiv.org.
    16. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    17. Xuanling Yang & Dong Li & Ting Zhang, 2024. "A simple stochastic nonlinear AR model with application to bubble," Papers 2401.07038, arXiv.org.
    18. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    19. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    20. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.

    More about this item

    Keywords

    Noncausal processes; Multivariate stable distributions; Conditional dependence; Extremal dependence; Explosive bubbles; Prediction; Crash odds; Portfolio allocation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:97353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.