IDEAS home Printed from https://ideas.repec.org/a/eee/jimfin/v143y2024ics0261560624000445.html
   My bibliography  Save this article

A short term credibility index for central banks under inflation targeting: An application to Brazil

Author

Listed:
  • Hecq, Alain
  • Issler, João Victor
  • Voisin, Elisa

Abstract

Our goal is to provide econometric tools that could act as an almost real-time warning-system for central banks working under an Inflation-Targeting Regime. In any given month, it computes the probability that inflation will remain within the tolerance bounds set in advance by the Regime. So, our short-term index gives a proper response time for Central Banks, something long-term indices prevalent in the literature do not provide. Although we showcase Brazil in our application, our method could be broadly applied to other countries that operate under an Inflation-Targeting Regime. Our key statistic is the probability that inflation will be within the bounds in the next 1- 3- and 6-months ahead. It is based on predictive densities obtained from a mixed causal-noncausal autoregressive (MAR) model. We polish the accuracy of our key statistic using the receiver operating characteristic curve (ROC curve), something new in this literature.

Suggested Citation

  • Hecq, Alain & Issler, João Victor & Voisin, Elisa, 2024. "A short term credibility index for central banks under inflation targeting: An application to Brazil," Journal of International Money and Finance, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:jimfin:v:143:y:2024:i:c:s0261560624000445
    DOI: 10.1016/j.jimonfin.2024.103057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0261560624000445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jimonfin.2024.103057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    2. Giancaterini, Francesco & Hecq, Alain, 2025. "Inference in mixed causal and noncausal models with generalized Student’s t-distributions," Econometrics and Statistics, Elsevier, vol. 33(C), pages 1-12.
    3. Stephane Dees & M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2009. "Identification of New Keynesian Phillips Curves from a Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(7), pages 1481-1502, October.
    4. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    5. James M. Nason & Gregor W. Smith, 2008. "Identifying the new Keynesian Phillips curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 525-551.
    6. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    7. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    8. Alain Hecq & Joao Victor Issler & Sean Telg, 2020. "Mixed causal–noncausal autoregressions with exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
    9. Gali, Jordi & Gertler, Mark & David Lopez-Salido, J., 2005. "Robustness of the estimates of the hybrid New Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1107-1118, September.
    10. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    11. Alan S. Blinder, 2000. "Central-Bank Credibility: Why Do We Care? How Do We Build It?," American Economic Review, American Economic Association, vol. 90(5), pages 1421-1431, December.
    12. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    13. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    14. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    15. Bomfim, Antulio N & Rudebusch, Glenn D, 2000. "Opportunistic and Deliberate Disinflation under Imperfect Credibility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(4), pages 707-721, November.
    16. de Mendonça, Helder Ferreira & de Guimarães e Souza, Gustavo José, 2009. "Inflation targeting credibility and reputation: The consequences for the interest rate," Economic Modelling, Elsevier, vol. 26(6), pages 1228-1238, November.
    17. Lars E. O. Svensson, 1999. "How should monetary policy be conducted in an era of price stability?," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 195-259.
    18. Grégory Levieuge & Yannick Lucotte & Sébastien Ringuedé, 2018. "Central bank credibility and the expectations channel: evidence based on a new credibility index," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 154(3), pages 493-535, August.
    19. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    20. Karapanagiotidis, Paul, 2014. "Dynamic modeling of commodity futures prices," MPRA Paper 56805, University Library of Munich, Germany.
    21. Stephen G. Cecchetti & Stefan Krause, 2002. "Central bank structure, policy efficiency, and macroeconomic performance: exploring empirical relationships," Review, Federal Reserve Bank of St. Louis, vol. 84(Jul), pages 47-60.
    22. Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
    23. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    24. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    25. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Hecq & Daniel Velasquez-Gaviria, 2022. "Spectral estimation for mixed causal-noncausal autoregressive models," Papers 2211.13830, arXiv.org.
    2. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    3. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    4. Hecq, Alain & Voisin, Elisa, 2021. "Forecasting bubbles with mixed causal-noncausal autoregressive models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 29-45.
    5. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    6. Bicchal, Motilal, 2022. "Central bank credibility and its effect on stabilization," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 73-94.
    7. Christian Gourieroux & Andrew Hencic & Joann Jasiak, 2021. "Forecast performance and bubble analysis in noncausal MAR(1, 1) processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 301-326, March.
    8. de Mendonça, Helder Ferreira & Tiberto, Bruno Pires, 2017. "Effect of credibility and exchange rate pass-through on inflation: An assessment for developing countries," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 196-244.
    9. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    10. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    11. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Gabriele Mingoli, 2024. "Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model," Tinbergen Institute Discussion Papers 24-072/III, Tinbergen Institute.
    13. F. Blasques & S.J. Koopman & G. Mingoli & S. Telg, 2024. "A Novel Test for the Presence of Local Explosive Dynamics," Tinbergen Institute Discussion Papers 24-036/III, Tinbergen Institute.
    14. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    15. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    16. Lanne, Markku & Luoto, Jani, 2013. "Autoregression-based estimation of the new Keynesian Phillips curve," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 561-570.
    17. Bruno Pires Tiberto & Helder Ferreira de Mendonça, 2023. "Effects of Sustainable Monetary and Fiscal Policy on FDI Inflows to EMDE Countries," Working Papers Series 575, Central Bank of Brazil, Research Department.
    18. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    19. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    20. Grégory Levieuge & Yannick Lucotte & Sébastien Ringuedé, 2018. "Central bank credibility and the expectations channel: evidence based on a new credibility index," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 154(3), pages 493-535, August.

    More about this item

    Keywords

    Inflation rate; Forecasting; Central-bank credibility; Noncausal models; Predictive densities; Probabilities;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jimfin:v:143:y:2024:i:c:s0261560624000445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30443 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.