IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i3p327-339.html
   My bibliography  Save this article

The versatility of spectrum analysis for forecasting financial time series

Author

Listed:
  • Pierre Rostan
  • Alexandra Rostan

Abstract

The versatility of the one†dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one†dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series.

Suggested Citation

  • Pierre Rostan & Alexandra Rostan, 2018. "The versatility of spectrum analysis for forecasting financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 327-339, April.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:327-339
    DOI: 10.1002/for.2504
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2504
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Rostan & Alexandra Rostan, 2023. "The benefit of the Covid‐19 pandemic on global temperature projections," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2079-2098, December.
    2. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    3. Joanna Bruzda, 2020. "The wavelet scaling approach to forecasting: Verification on a large set of Noisy data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 353-367, April.
    4. Montagnon, C.E., 2021. "Forecasting by splitting a time series using Singular Value Decomposition then using both ARMA and a Fokker Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Pierre Rostan & Alexandra Rostan, 2024. "How Australia's economy gained momentum because of Covid‐19," Australian Economic Papers, Wiley Blackwell, vol. 63(1), pages 36-58, March.
    6. Pierre Rostan & Alexandra Rostan & John Wall, 2024. "Measuring the Resilience to the Covid-19 Pandemic of Eurozone Economies with Their 2050 Forecasts," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1137-1157, March.
    7. Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:327-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.