IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v27y2008i7p637-648.html
   My bibliography  Save this article

Traditional versus novel forecasting techniques: how much do we gain?

Author

Listed:
  • Viviana Fernandez

Abstract

This article applies two novel techniques to forecast the value of US manufacturing shipments over the period 1956-2000: wavelets and support vector machines (SVM). Wavelets have become increasingly popular in the fields of economics and finance in recent years, whereas SVM has emerged as a more user-friendly alternative to artificial neural networks. These two methodologies are compared with two well-known time series techniques: multiplicative seasonal autoregressive integrated moving average (ARIMA) and unobserved components (UC). Based on forecasting accuracy and encompassing tests, and forecasting combination, we conclude that UC and ARIMA generally outperform wavelets and SVM. However, in some cases the latter provide valuable forecasting information that it is not contained in the former. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Viviana Fernandez, 2008. "Traditional versus novel forecasting techniques: how much do we gain?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 637-648.
  • Handle: RePEc:jof:jforec:v:27:y:2008:i:7:p:637-648
    DOI: 10.1002/for.1066
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1066
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
    2. Lin Shinn-Juh & Stevenson Maxwell, 2001. "Wavelet Analysis of the Cost-of-Carry Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-17, April.
    3. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, September.
    4. Fernandez Viviana P, 2005. "The International CAPM and a Wavelet-Based Decomposition of Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-37, December.
    5. Ramazan Genay & Faruk Seļuk & Brandon Whitcher, 2003. "Systematic risk and timescales," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 108-116.
    6. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Connor Jeff & Rossiter Rosemary, 2005. "Wavelet Transforms and Commodity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-22, March.
    9. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    10. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    11. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    12. Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
    13. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    14. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    15. Lanza, Alessandro & Manera, Matteo & Giovannini, Massimo, 2005. "Modeling and forecasting cointegrated relationships among heavy oil and product prices," Energy Economics, Elsevier, vol. 27(6), pages 831-848, November.
    16. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    17. Gencay, Ramazan & Selcuk, Faruk & Whitcher, Brandon, 2005. "Multiscale systematic risk," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 55-70, February.
    18. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    19. Fang, Yue, 2003. "Forecasting combination and encompassing tests," International Journal of Forecasting, Elsevier, vol. 19(1), pages 87-94.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens J. Krüger, 2021. "A Wavelet Evaluation of Some Leading Business Cycle Indicators for the German Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(3), pages 293-319, December.
    2. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    3. Tang, Hui-Wen Vivian & Yin, Mu-Shang, 2012. "Forecasting performance of grey prediction for education expenditure and school enrollment," Economics of Education Review, Elsevier, vol. 31(4), pages 452-462.
    4. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    5. Joanna Bruzda, 2020. "The wavelet scaling approach to forecasting: Verification on a large set of Noisy data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 353-367, April.
    6. Krüger, Jens J., 2024. "A Wavelet Evaluation of Some Leading Business Cycle Indicators for the German Economy," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 149438, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandez, Viviana, 2007. "Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry," Resources Policy, Elsevier, vol. 32(1-2), pages 80-89.
    2. Fernandez, Viviana, 2006. "Does domestic cooperation lead to business-cycle convergence and financial linkages?," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(3), pages 369-396, July.
    3. Fernandez, Viviana, 2007. "A postcard from the past: The behavior of U.S. stock markets during 1871–1938," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 267-282.
    4. Fernandez, Viviana, 2009. "The behavior of stock returns in the mining industry following the Iraq war," Research in International Business and Finance, Elsevier, vol. 23(3), pages 274-292, September.
    5. Fernandez, Viviana, 2008. "The war on terror and its impact on the long-term volatility of financial markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 1-26.
    6. Viviana Fernández, 2006. "Forecasting crude oil and natural gas spot prices by classification methods," Documentos de Trabajo 229, Centro de Economía Aplicada, Universidad de Chile.
    7. Fernandez, Viviana, 2006. "The impact of major global events on volatility shifts: Evidence from the Asian crisis and 9/11," Economic Systems, Elsevier, vol. 30(1), pages 79-97, March.
    8. Masih, Mansur & Alzahrani, Mohammed & Al-Titi, Omar, 2010. "Systematic risk and time scales: New evidence from an application of wavelet approach to the emerging Gulf stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 10-18, January.
    9. Viviana Fernández, 2007. "The behavior of stock returns in the Asia-Pacific mining industry following the Iraq war," Documentos de Trabajo 243, Centro de Economía Aplicada, Universidad de Chile.
    10. Fernandez, Viviana, 2006. "The CAPM and value at risk at different time-scales," International Review of Financial Analysis, Elsevier, vol. 15(3), pages 203-219.
    11. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    12. Corbet, Shaen & Gurdgiev, Constantin & Meegan, Andrew, 2018. "Long-term stock market volatility and the influence of terrorist attacks in Europe," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 118-131.
    13. Xiaojie Xu, 2018. "Causal structure among US corn futures and regional cash prices in the time and frequency domain," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2455-2480, October.
    14. Viviana Fernandez, 2005. "Time-Scale Decomposition of Price Transmission in International Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 41(4), pages 57-90, August.
    15. Yi-Ting Chen & Edward W. Sun & Min-Teh Yu, 2018. "Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 653-684, August.
    16. Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, September.
    17. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    18. Hassan Farazmand & Amin Mansouri & Morteza Afghah, 2014. "Choosing the best type of wavelet: Case study-business cycle in Iran," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 4(5), pages 293-314, May.
    19. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    20. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:7:p:637-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.