IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i3p1113-1123.html
   My bibliography  Save this article

Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach

Author

Listed:
  • Tran, Kien C.
  • Tsionas, Mike G.

Abstract

In this paper, we propose a semiparametric version of the zero-inefficiency stochastic frontier model of Kumbhakar, Parmeter, and Tsionas (2013) by allowing for the proportion of firms that are fully efficient to depend on a set of covariates via unknown smooth function. We propose a (iterative) backfitting local maximum likelihood estimation procedure that achieves the optimal convergence rates of both frontier parameters and the nonparametric function of the probability of being efficient. We derive the asymptotic bias and variance of the proposed estimator and establish its asymptotic normality. In addition, we discuss how to test for parametric specification of the proportion of firms that are fully efficient as well as how to test for the presence of fully inefficient firms, based on the sieve likelihood ratio statistics. The finite sample behaviors of the proposed estimation procedure and tests are examined using Monte Carlo simulations. An empirical application is further presented to demonstrate the usefulness of the proposed methodology.

Suggested Citation

  • Tran, Kien C. & Tsionas, Mike G., 2016. "Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1113-1123.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1113-1123
    DOI: 10.1016/j.ejor.2015.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tzeremes, Nickolaos G., 2015. "Efficiency dynamics in Indian banking: A conditional directional distance approach," European Journal of Operational Research, Elsevier, vol. 240(3), pages 807-818.
    2. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    3. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    4. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    5. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    6. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    7. Ivaldi, Marc & Monier-Dilhan, Sylvette & Simioni, Michel, 1995. "Stochastic production frontiers and panel data: A latent variable framework," European Journal of Operational Research, Elsevier, vol. 80(3), pages 534-547, February.
    8. Mian Huang & Weixin Yao, 2012. "Mixture of Regression Models With Varying Mixing Proportions: A Semiparametric Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 711-724, June.
    9. Michael Koetter & James W. Kolari & Laura Spierdijk, 2012. "Enjoying the Quiet Life under Deregulation? Evidence from Adjusted Lerner Indices for U.S. Banks," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 462-480, May.
    10. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    11. Ondrich, Jan & Ruggiero, John, 2001. "Efficiency measurement in the stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 129(2), pages 434-442, March.
    12. Sathye, Milind, 2003. "Efficiency of banks in a developing economy: The case of India," European Journal of Operational Research, Elsevier, vol. 148(3), pages 662-671, August.
    13. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    14. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    15. Steven B. Caudill, 2003. "Estimating a mixture of stochastic frontier regression models via the em algorithm: A multiproduct cost function application," Empirical Economics, Springer, vol. 28(3), pages 581-598, July.
    16. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    17. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    18. Diego Restrepo‐Tobón & Subal C. Kumbhakar, 2014. "Enjoying The Quiet Life Under Deregulation? Not Quite," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 333-343, March.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsionas, Mike G. & Mallick, Sushanta K., 2019. "A Bayesian semiparametric approach to stochastic frontiers and productivity," European Journal of Operational Research, Elsevier, vol. 274(1), pages 391-402.
    2. Hou, Zhezhi & Zhao, Shunan & Kumbhakar, Subal C., 2023. "The GMM estimation of semiparametric spatial stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1450-1464.
    3. Tsionas, Euthimios G. & Mamatzakis, Emmanuel C., 2017. "Adjustment costs in the technical efficiency: An application to global banking," European Journal of Operational Research, Elsevier, vol. 256(2), pages 640-649.
    4. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    5. Jianxu Liu & Sanzidur Rahman & Songsak Sriboonchitta & Aree Wiboonpongse, 2017. "Enhancing Productivity and Resource Conservation by Eliminating Inefficiency of Thai Rice Farmers: A Zero Inefficiency Stochastic Frontier Approach," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    6. Yao, Feng & Wang, Taining & Tian, Jinjing & Kumbhakar, Subal C., 2018. "Estimation of a smooth coefficient zero-inefficiency panel stochastic frontier model: A semiparametric approach," Economics Letters, Elsevier, vol. 166(C), pages 25-30.
    7. Kevork, Ilias S. & Pange, Jenny & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2017. "Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1125-1140.
    8. Tsionas, Mike G., 2024. "A generalized inefficiency model with input and output dependence," European Journal of Operational Research, Elsevier, vol. 312(1), pages 315-323.
    9. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    2. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.
    3. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    4. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    5. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    7. Luis Orea & Tooraj Jamasb, 2017. "Regulating Heterogeneous Utilities: A New Latent Class Approach with Application to the Norwegian Electricity Distribution Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    9. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    10. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    11. Kien C. Tran & Mike G. Tsionas & Emmanuel Mamatzakis, 2020. "Why fully efficient banks matter? A nonparametric stochastic frontier approach in the presence of fully efficient banks," Empirical Economics, Springer, vol. 58(6), pages 2733-2760, June.
    12. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    13. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    14. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    15. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    16. Mäkinen, Mikko, 2007. "Do Stock Opiton Schemes Affect Technical Inefficiency? Evidence from Finland," Discussion Papers 1085, The Research Institute of the Finnish Economy.
    17. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    18. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    19. repec:cte:wsrepe:ws121007 is not listed on IDEAS
    20. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.
    21. Goddard, John & Molyneux, Philip & Williams, Jonathan, 2014. "Dealing with cross-firm heterogeneity in bank efficiency estimates: Some evidence from Latin America," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 130-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:3:p:1113-1123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.