IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v21y2006i8p1295-1326.html
   My bibliography  Save this article

Identification and estimation of bounds on school performance measures: a nonparametric analysis of a mixture model with verification

Author

Listed:
  • Jeff Dominitz
  • Robert P. Sherman

Abstract

This paper identifies and nonparametrically estimates sharp bounds on school performance measures based on test scores that may not be valid for all students. A mixture model with verification is developed to handle this problem. This is a mixture model for data that can be partitioned into two sets, one of which (the so‐called verified set) is more likely to be from the distribution of interest than the other. An administrative classification of each student as English proficient or limited English proficient determines these sets. An analysis of performance measures for some California public schools reveals how verification information and plausible monotonicity restrictions can bound the range of disagreement about school performance based on observed scores. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Jeff Dominitz & Robert P. Sherman, 2006. "Identification and estimation of bounds on school performance measures: a nonparametric analysis of a mixture model with verification," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1295-1326, December.
  • Handle: RePEc:wly:japmet:v:21:y:2006:i:8:p:1295-1326
    DOI: 10.1002/jae.912
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.912
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horowitz, Joel & Manski, Charles, 1997. "Nonparametric Analysis of Randomized Experiments With Missing Covariate and Outcome Data," Working Papers 97-16, University of Iowa, Department of Economics.
    2. Thomas J. Kane & Douglas O. Staiger, 2002. "The Promise and Pitfalls of Using Imprecise School Accountability Measures," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 91-114, Fall.
    3. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    4. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    5. Molinari, Francesca, 2010. "Missing Treatments," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 82-95.
    6. Horowitz, J.L. & Manski, C.F., 1995. "What Can Be Learned About Population Parameters when the Data Are Contaminated," Working Papers 95-18, University of Iowa, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaspar W thrich, 2013. "Set Identification of Generalized Linear Predictors in the Presence of Non-Classical Measurement Errors," Diskussionsschriften dp1304, Universitaet Bern, Departement Volkswirtschaft.
    2. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    3. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    2. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    3. Gundersen, Craig & Kreider, Brent & Pepper, John, 2012. "The impact of the National School Lunch Program on child health: A nonparametric bounds analysis," Journal of Econometrics, Elsevier, vol. 166(1), pages 79-91.
    4. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    5. Esmeralda A. Ramalho & Richard J. Smith, 2013. "Discrete Choice Non-Response," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(1), pages 343-364.
    6. Brent Kreider & Steven C. Hill, 2009. "Partially Identifying Treatment Effects with an Application to Covering the Uninsured," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    7. Molinari, Francesca, 2010. "Missing Treatments," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 82-95.
    8. Koedel Cory & Leatherman Rebecca & Parsons Eric, 2012. "Test Measurement Error and Inference from Value-Added Models," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-37, November.
    9. Lothar Essig & Joachim K. Winter, 2009. "Item Non-Response to Financial Questions in Household Surveys: An Experimental Study of Interviewer and Mode Effects," Fiscal Studies, Institute for Fiscal Studies, vol. 30(Special I), pages 367-390, December.
    10. Karsten Marshall Elseth Rieck & Kjetil Telle, 2012. "Sick leave before, during and after pregnancy," Discussion Papers 690, Statistics Norway, Research Department.
    11. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    12. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    13. Philip A. Haile & Elie Tamer, 2003. "Inference with an Incomplete Model of English Auctions," Journal of Political Economy, University of Chicago Press, vol. 111(1), pages 1-51, February.
    14. Nicoletti, Cheti & Peracchi, Franco & Foliano, Francesca, 2011. "Estimating Income Poverty in the Presence of Missing Data and Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 61-72.
    15. Rosalia Vazquez-Alvarez, 2003. "Anchoring Bias and Covariate Nonresponse," University of St. Gallen Department of Economics working paper series 2003 2003-19, Department of Economics, University of St. Gallen.
    16. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
    17. Christoph Feichter & Frank Moers & Oscar Timmermans, 2022. "Relative Performance Evaluation and Competitive Aggressiveness," Journal of Accounting Research, Wiley Blackwell, vol. 60(5), pages 1859-1913, December.
    18. Winter, Joachim, 0000. "Bracketing effects in categorized survey questions and the measurement of economic quantities," Sonderforschungsbereich 504 Publications 02-35, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    19. Manski, Charles F., 2016. "Credible interval estimates for official statistics with survey nonresponse," Journal of Econometrics, Elsevier, vol. 191(2), pages 293-301.
    20. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:21:y:2006:i:8:p:1295-1326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.