IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i5p915-926.html
   My bibliography  Save this article

Effect of steam hydration on reactivity and strength of cement‐supported calcium sorbents for CO 2 capture

Author

Listed:
  • Zhijian Yu
  • Lunbo Duan
  • Chenglin Su
  • Yingjie Li
  • Edward John Anthony

Abstract

Steam hydration was used to reactivate spent cement‐supported CO 2 sorbent pellets for recycle. The effect of steam hydration on the reactivity of sorbents was investigated in a bubbling fluidized reactor. A specially designed impact apparatus was developed to evaluate the strength of the reactivated pellets as well as determine the effect of ‘superheating’. It was found that the reactivity of synthetic pellets was elevated significantly over that of raw limestone after steam hydration. The CaO conversion of spent pellets increased from 0.113 to 0.419 after hydration, whereas that of spent limestone ranged from 0.089 to 0.278. The CaO conversions of hydrated samples calcined under different conditions achieved the identical level, proportional to the degree of hydration. As expected, the mechanical strength of synthetic pellets declined severely after reactivation. Large cracks emerged on hydrated limestone as seen in scanning electron microscope images. By contrast, similar cracks were not observed for synthetic pellets after hydration, although hydration did produce higher porosity than seen with limestone and an increased surface area, which enhanced CO 2 capacity and was associated with an increase in strength loss. The breakage rate of superheated, steam‐reactivated limestone‐derived pellets was about half that of hydrated samples. This demonstrates that superheating treatment (which allows the annealing of stacking faults and mechanical strain produced by hydration) could enhance the strength of hydrated pellets. This work demonstrated that combining steam hydration with superheating can both reactivate the spent synthetic pellets and reduce strength decay associated with the hydration process. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Zhijian Yu & Lunbo Duan & Chenglin Su & Yingjie Li & Edward John Anthony, 2017. "Effect of steam hydration on reactivity and strength of cement‐supported calcium sorbents for CO 2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 915-926, October.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:5:p:915-926
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1690
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huichao & Zhang, Pingping & Duan, Yufeng & Zhao, Changsui, 2016. "Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process," Applied Energy, Elsevier, vol. 162(C), pages 390-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Yang & Lunbo Duan & Hongjian Tang & Tianyi Cai & Zhao Sun, 2018. "Explaining steam‐enhanced carbonation of CaO based on first principles," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1110-1123, December.
    2. Peng Yang & Zhao Sun & Lunbo Duan & Hongjian Tang, 2020. "Mechanism of steam‐declined sulfation and steam‐enhanced carbonation by DFT calculations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 472-483, April.
    3. Chenglin Su & Lunbo Duan & Edward John Anthony, 2018. "CO2 capture and attrition performance of competitive eco‐friendly calcium‐based pellets in fluidized bed," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1124-1133, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Liang & Huichao Chen, 2021. "Utilization of biomass to promote calcium‐based sorbents for CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 837-855, October.
    2. Chen, Xiaoyi & Jin, Xiaogang & Liu, Zhimin & Ling, Xiang & Wang, Yan, 2018. "Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping," Energy, Elsevier, vol. 155(C), pages 128-138.
    3. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    4. Khosa, Azhar Abbas & Yan, J. & Zhao, C.Y., 2021. "Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system," Energy, Elsevier, vol. 215(PA).
    5. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    6. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    7. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    8. Benitez-Guerrero, Monica & Valverde, Jose Manuel & Perejon, Antonio & Sanchez-Jimenez, Pedro E. & Perez-Maqueda, Luis A., 2018. "Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power," Applied Energy, Elsevier, vol. 210(C), pages 108-116.
    9. Khosa, Azhar Abbas & Han, Xinyue & Zhao, C.Y., 2024. "Experimental investigation of CaCO3/CaO reaction pair in a fixed bed reactor for CSP application," Renewable Energy, Elsevier, vol. 221(C).
    10. Saman Setoodeh Jahromy & Mudassar Azam & Christian Jordan & Michael Harasek & Franz Winter, 2021. "The Potential Use of Fly Ash from the Pulp and Paper Industry as Thermochemical Energy and CO 2 Storage Material," Energies, MDPI, vol. 14(11), pages 1-21, June.
    11. Rehan Anwar & M. Veronica Sofianos, 2024. "Exploring the Role of Additives in Enhancing the Performance of Limestone-Based Thermochemical Energy Storage: A Review," Energies, MDPI, vol. 17(11), pages 1-20, May.
    12. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74," Applied Energy, Elsevier, vol. 230(C), pages 1093-1107.
    13. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    14. Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:5:p:915-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.