IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01429-2.html
   My bibliography  Save this article

Estimation and testing of kink regression model with endogenous regressors

Author

Listed:
  • Yan Sun

    (Shanghai University of Finance and Economics)

  • Wei Huang

    (Zhejiang University of Finance and Economics)

Abstract

Kink regression model which assumes continuity at the threshold point has wide applications in statistics and economics. Existing estimation methods are obtained under a rather important assumption that the errors are mean independent of the threshold variable, namely, it is exogenous. However, endogeneity can arise as a result of omitted variables, lagged dependent variable, measurement error and many other sources. In this paper, we consider the estimation and testing for the kink regression model with endogenous threshold variable and possible other endogenous regressors. We find that the conventional form of 2SLS estimator is inconsistent as the expectation of a nonlinear function is not generally the function of expectations. The continuity feature of the regression prompts us to try method based on the GMM principle using nonlinear instruments. We derive the asymptotic properties using a different way from the usual GMM estimators as the objective function is not smooth with respect to the threshold parameter. A sup-Wald test for the presence of kink effect is established and a bootstrap procedure to gain the p value is introduced. Monte Carlo simulations show that the proposed estimator and testing procedure perform well. The proposed procedures is also illustrated using an empirical application.

Suggested Citation

  • Yan Sun & Wei Huang, 2024. "Estimation and testing of kink regression model with endogenous regressors," Computational Statistics, Springer, vol. 39(6), pages 3115-3135, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01429-2
    DOI: 10.1007/s00180-023-01429-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01429-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01429-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    2. David E. Card & David S. Lee & Zhuan Pei & Andrea Weber, 2012. "Nonlinear Policy Rules and the Identification and Estimation of Causal Effects in a Generalized Regression Kink Design," NRN working papers 2012-14, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    3. Yining Chen, 2021. "Jump or kink: on super-efficiency in segmented linear regression breakpoint estimation," Biometrika, Biometrika Trust, vol. 108(1), pages 215-222.
    4. Parsley, David C. & Wei, Shang-Jin, 2001. "Explaining the border effect: the role of exchange rate variability, shipping costs, and geography," Journal of International Economics, Elsevier, vol. 55(1), pages 87-105, October.
    5. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    6. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    7. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    8. Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
    9. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    10. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    11. Chenxi Li & Ying Wei & Rick Chappell & Xuming He, 2011. "Bent Line Quantile Regression with Application to an Allometric Study of Land Mammals' Speed and Mass," Biometrics, The International Biometric Society, vol. 67(1), pages 242-249, March.
    12. Deidda, Luca & Fattouh, Bassam, 2002. "Non-linearity between finance and growth," Economics Letters, Elsevier, vol. 74(3), pages 339-345, February.
    13. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    14. Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019. "Robust inference for threshold regression models," Journal of Econometrics, Elsevier, vol. 210(2), pages 291-309.
    15. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    16. Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
    17. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olaoye, Olumide O. & Eluwole, Oluwatosin O. & Ayesha, Aziz & Afolabi, Olugbenga O., 2020. "Government spending and economic growth in ECOWAS: An asymmetric analysis," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
    3. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    4. repec:cep:stiecm:/2014/577 is not listed on IDEAS
    5. Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 40ca581a-e228-49ae-911f-e, Tilburg University, School of Economics and Management.
    6. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    7. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    8. Junho Lee & Ying Sun & Huixia Judy Wang, 2021. "Spatial cluster detection with threshold quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    9. Lee, Yoonseok & Wang, Yulong, 2023. "Threshold regression with nonparametric sample splitting," Journal of Econometrics, Elsevier, vol. 235(2), pages 816-842.
    10. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Desperate Times Call For Desperate Measures: Government Spending Multipliers In Hard Times," Economic Inquiry, Western Economic Association International, vol. 58(4), pages 1949-1957, October.
    11. Yu, Ping, 2015. "Adaptive estimation of the threshold point in threshold regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 83-100.
    12. Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019. "Robust inference for threshold regression models," Journal of Econometrics, Elsevier, vol. 210(2), pages 291-309.
    13. Seo, Myung Hwan & Koo, Bonsoo & Yang, Yangzhuoran Fin, 2024. "Nonlinear dynamics of Kimchi premium," Economic Modelling, Elsevier, vol. 135(C).
    14. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    15. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    16. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Kadilli, Anjeza & Krishnakumar, Jaya, 2022. "Smooth Transition Simultaneous Equation Models," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    18. Ng, Adam & Dewandaru, Ginanjar & Ibrahim, Mansor H., 2015. "Property rights and the stock market-growth nexus," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 48-63.
    19. Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
    20. Tkacz, Greg, 2004. "Inflation changes, yield spreads, and threshold effects," International Review of Economics & Finance, Elsevier, vol. 13(2), pages 187-199.
    21. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    22. Hasanov, Fakhri J. & Aliyev, Ruslan & Taskin, Dilvin & Suleymanov, Elchin, 2023. "Oil rents and non-oil economic growth in CIS oil exporters. The role of financial development," Resources Policy, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01429-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.