IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v34y2016i4p642-660.html
   My bibliography  Save this article

Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients

Author

Listed:
  • Xiaoyi Han
  • Lung-Fei Lee

Abstract

This article examines spatial panel autoregressive (SAR) models with dynamic, time-varying endogenous spatial weights matrices, common factors, and random coefficients. An empirical application is on the spillover effects of state Medicaid spending. Endogeneity of spatial weights matrices comes from the correlation of “economic distance” and the disturbances in the SAR equation. Common factors control for common shocks to all states and random coefficients may capture heterogeneity in responses. The Bayesian Markov chain Monte Carlo (MCMC) estimation is developed. Identification of factors and factor loadings, and model selection issues based upon the deviance information criterion (DIC) are explored. We find that a state’s Medicaid related spending is positively and significantly affected by those of its neighbors. Both welfare motivated move and yardstick competition are possible sources of strategic interactions among state governments. Welfare motivated move turns out to be more a driving force for the interdependence and states do exhibit heterogenous responses.

Suggested Citation

  • Xiaoyi Han & Lung-Fei Lee, 2016. "Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 642-660, October.
  • Handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:642-660
    DOI: 10.1080/07350015.2016.1167058
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2016.1167058
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2016.1167058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Poirier, Dale J & Tobias, Justin L, 2003. "On the Predictive Distributions of Outcome Gains in the Presence of an Unidentified Parameter," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 258-268, April.
    3. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    4. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    5. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    6. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    7. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    8. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    9. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    10. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    11. Cem Ertur & Wilfried Koch, 2007. "Growth, technological interdependence and spatial externalities: theory and evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1033-1062.
    12. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    13. Joshua C. C. Chan & Justin L. Tobias, 2015. "Priors and Posterior Computation in Linear Endogenous Variable Models with Imperfect Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 650-674, June.
    14. Baltagi, Badi H. & Heun Song, Seuck & Cheol Jung, Byoung & Koh, Won, 2007. "Testing for serial correlation, spatial autocorrelation and random effects using panel data," Journal of Econometrics, Elsevier, vol. 140(1), pages 5-51, September.
    15. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    16. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    17. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    18. Baicker, Katherine, 2005. "The spillover effects of state spending," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 529-544, February.
    19. Gasper A. Garofalo & Steven Yamarik, 2002. "Regional Convergence: Evidence From A New State-By-State Capital Stock Series," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 316-323, May.
    20. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2013. "A Generalized Spatial Panel Data Model with Random Effects," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 650-685, August.
    21. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    22. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    23. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    24. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    25. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    26. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    27. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    28. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    29. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    30. Lung-fei Lee & Jihai Yu, 2012. "QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 31-74, March.
    31. Case, Anne C. & Rosen, Harvey S. & Hines, James Jr., 1993. "Budget spillovers and fiscal policy interdependence : Evidence from the states," Journal of Public Economics, Elsevier, vol. 52(3), pages 285-307, October.
    32. repec:hal:journl:peer-00796743 is not listed on IDEAS
    33. Bernard Fingleton, 2001. "Equilibrium and Economic Growth: Spatial Econometric Models and Simulations," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 117-147, February.
    34. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    35. Xu Lin, 2010. "Identifying Peer Effects in Student Academic Achievement by Spatial Autoregressive Models with Group Unobservables," Journal of Labor Economics, University of Chicago Press, vol. 28(4), pages 825-860, October.
    36. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary Cornwall & Beau Sauley, 2021. "Indirect effects and causal inference: reconsidering regression discontinuity," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-28, December.
    2. Sophie Béreau & Nicolas Debarsy & Cyrille Dossougoin & Jean-Yves Gnabo, 2022. "Contagion in the Banking Industry: a Robust-to-Endogeneity Analysis," Working Papers halshs-03513049, HAL.
    3. Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
    4. Süleyman Taşpınar & Osman DoĞan & Jiyoung Chae & Anil K. Bera, 2021. "Bayesian Inference in Spatial Stochastic Volatility Models: An Application to House Price Returns in Chicago," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1243-1272, October.
    5. Li, Jianan & Han, Xiaoyi, 2019. "Bayesian Lassos for spatial durbin error model with smoothness prior: Application to detect spillovers of China's treaty ports," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 38-74.
    6. Jeong, Hanbat & Lee, Lung-fei, 2021. "Spatial dynamic game models for coevolution of intertemporal economic decision-making and spatial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
    7. Keisuke Kondo, 2022. "Spatial dependence in regional business cycles: evidence from Mexican states," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-46, December.
    8. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    9. Román Mínguez & Roberto Basile & María Durbán, 2020. "An alternative semiparametric model for spatial panel data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 669-708, December.
    10. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    11. Nikolas Kuschnig, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Papers wuwp318, Vienna University of Economics and Business, Department of Economics.
    12. Osman Doğan & Süleyman Taşpınar & Anil K. Bera, 2021. "Bayesian estimation of stochastic tail index from high-frequency financial data," Empirical Economics, Springer, vol. 61(5), pages 2685-2711, November.
    13. Anna Gloria Billé & Leopoldo Catania, 2018. "Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices," BEMPS - Bozen Economics & Management Paper Series BEMPS55, Faculty of Economics and Management at the Free University of Bozen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    2. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    3. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    4. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    5. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    6. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    7. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    8. Qu, Xi & Lee, Lung-fei & Yu, Jihai, 2017. "QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices," Journal of Econometrics, Elsevier, vol. 197(2), pages 173-201.
    9. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    10. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    11. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    12. Bai, Jushan & Li, Kunpeng, 2013. "Spatial panel data models with common shocks," MPRA Paper 52786, University Library of Munich, Germany, revised 09 Mar 2014.
    13. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    14. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    15. Lung‐fei Lee & Jihai Yu, 2012. "Spatial Panels: Random Components Versus Fixed Effects," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1369-1412, November.
    16. Wang, Wei & Lee, Lung-fei, 2013. "Estimation of spatial panel data models with randomly missing data in the dependent variable," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 521-538.
    17. repec:rri:wpaper:201303 is not listed on IDEAS
    18. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," CESifo Working Paper Series 5428, CESifo.
    19. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2015. "Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients," Working Papers 749, Queen Mary University of London, School of Economics and Finance.
    20. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    21. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:642-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.