IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v36y2020i3p465-476.html
   My bibliography  Save this article

Has the iPhone cannibalized the iPad? An asymmetric competition model

Author

Listed:
  • Mariangela Guidolin
  • Renato Guseo

Abstract

Product cannibalization is a well‐known phenomenon in marketing, describing the case when a new product steals sales from another product under the same brand. A special case of cannibalization may occur when the older product reacts to the competitive strength of the newer one, absorbing the corresponding market shares. We show that such cannibalization occurred between two Apple products, the iPhone and the iPad, and the first has succeeded at the expense of the second. We propose an innovation diffusion model for asymmetric competition, Lotka‐Volterra with asymmetric competition, allow to test the presence and the extent of the inverse cannibalization phenomenon. A nondimensional representation of the model helps showing the effects of cannibalization on life cycle length.

Suggested Citation

  • Mariangela Guidolin & Renato Guseo, 2020. "Has the iPhone cannibalized the iPad? An asymmetric competition model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 465-476, May.
  • Handle: RePEc:wly:apsmbi:v:36:y:2020:i:3:p:465-476
    DOI: 10.1002/asmb.2505
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2505
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Novelli, Francesco, 2013. "Measuring Sales Cannibalization in Information Technology Markets: Conceptual Foundations and Research Issues," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 61301, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Renato Guseo & Cinzia Mortarino, 2010. "Correction to the Paper “Optimal Product Launch Times in a Duopoly: Balancing Life-Cycle Revenues with Product Cost”," Operations Research, INFORMS, vol. 58(5), pages 1522-1523, October.
    5. Baláž, Vladimír & Williams, Allan M., 2012. "Diffusion and competition of voice communication technologies in the Czech and Slovak Republics, 1948–2009," Technological Forecasting and Social Change, Elsevier, vol. 79(2), pages 393-404.
    6. Sergei Savin & Christian Terwiesch, 2005. "Optimal Product Launch Times in a Duopoly: Balancing Life-Cycle Revenues with Product Cost," Operations Research, INFORMS, vol. 53(1), pages 26-47, February.
    7. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    8. Guseo, Renato & Mortarino, Cinzia, 2012. "Sequential market entries and competition modelling in multi-innovation diffusions," European Journal of Operational Research, Elsevier, vol. 216(3), pages 658-667.
    9. Guidolin, Mariangela & Guseo, Renato, 2014. "Modelling seasonality in innovation diffusion," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 33-40.
    10. Novelli, Francesco, 2013. "Measuring Sales Cannibalization in Information Technology Markets: Conceptual Foundations and Research Issues," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 61299, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Andrea Savio & Luigi De Giovanni & Mariangela Guidolin, 2022. "Modelling Energy Transition in Germany: An Analysis through Ordinary Differential Equations and System Dynamics," Forecasting, MDPI, vol. 4(2), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    5. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    6. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    7. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    8. Guseo, Renato, 2016. "Latent heterogeneity effects in modelling individual hazards: A non-proportional approach," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 89-93.
    9. Fazıl Paç, M. & Savin, Sergei & Velu, Chander, 2018. "When to adopt a service innovation: Nash equilibria in a competitive diffusion framework," European Journal of Operational Research, Elsevier, vol. 271(3), pages 968-984.
    10. Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
    11. Cerqueti, Roy & Quaranta, Anna Grazia & Ventura, Marco, 2016. "Innovation, imitation and policy inaction," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 22-30.
    12. Islam, Towhidul & Meade, Nigel, 2015. "Firm level innovation diffusion of 3G mobile connections in international context," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1138-1152.
    13. Guseo, Renato & Guidolin, Mariangela, 2015. "Heterogeneity in diffusion of innovations modelling: A few fundamental types," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 514-524.
    14. Guidolin, Mariangela & Guseo, Renato, 2016. "The German energy transition: Modeling competition and substitution between nuclear power and Renewable Energy Technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1498-1504.
    15. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    16. Hongmin Li & Dieter Armbruster & Karl G. Kempf, 2013. "A Population-Growth Model for Multiple Generations of Technology Products," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 343-360, July.
    17. Semra Gunduc, 2021. "Diffusion of Innovation In Competitive Markets-A Study on the Global Smartphone Diffusion," Papers 2103.07707, arXiv.org.
    18. Renato Guseo & Cinzia Mortarino, 2014. "Multivariate nonlinear least squares: robustness and efficiency of standard versus Beauchamp and Cornell methodologies," Computational Statistics, Springer, vol. 29(6), pages 1609-1636, December.
    19. Andrea Savio & Luigi De Giovanni & Mariangela Guidolin, 2022. "Modelling Energy Transition in Germany: An Analysis through Ordinary Differential Equations and System Dynamics," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    20. Neokosmidis, Ioannis & Avaritsiotis, Nikolaos & Ventoura, Zoe & Varoutas, Dimitris, 2015. "Assessment of the gap and (non-)Internet users evolution based on population biology dynamics," Telecommunications Policy, Elsevier, vol. 39(1), pages 14-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:36:y:2020:i:3:p:465-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.