IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i6p1609-1636.html
   My bibliography  Save this article

Multivariate nonlinear least squares: robustness and efficiency of standard versus Beauchamp and Cornell methodologies

Author

Listed:
  • Renato Guseo
  • Cinzia Mortarino

Abstract

Simultaneous estimation in nonlinear multivariate regression contexts is a complex problem in inference. In this paper, we compare the methodology suggested in the literature for an unknown covariance matrix among response components, the methodology by Beauchamp and Cornell (B&C), with the standard nonlinear least squares approach (NLS). In the first part of the paper, we contrast B&C and the standard NLS, pointing out, from the theoretical point of view, how a model specification error could affect the estimation. A comprehensive simulation study is also performed to evaluate the effectiveness of B&C versus standard NLS under both correct and misspecified models. Several alternative models are considered to highlight the consequences of different types of specification error. An application to a real dataset within the context of quantitative marketing is presented. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Renato Guseo & Cinzia Mortarino, 2014. "Multivariate nonlinear least squares: robustness and efficiency of standard versus Beauchamp and Cornell methodologies," Computational Statistics, Springer, vol. 29(6), pages 1609-1636, December.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1609-1636
    DOI: 10.1007/s00180-014-0509-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0509-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0509-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. Sergei Savin & Christian Terwiesch, 2005. "Optimal Product Launch Times in a Duopoly: Balancing Life-Cycle Revenues with Product Cost," Operations Research, INFORMS, vol. 53(1), pages 26-47, February.
    3. Guseo, Renato & Mortarino, Cinzia, 2012. "Sequential market entries and competition modelling in multi-innovation diffusions," European Journal of Operational Research, Elsevier, vol. 216(3), pages 658-667.
    4. Amemiya, Takeshi, 1983. "Non-linear regression models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 6, pages 333-389, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Mariangela Guidolin & Renato Guseo, 2020. "Has the iPhone cannibalized the iPad? An asymmetric competition model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 465-476, May.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    5. Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
    6. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
    7. Semra Gunduc, 2021. "Diffusion of Innovation In Competitive Markets-A Study on the Global Smartphone Diffusion," Papers 2103.07707, arXiv.org.
    8. Guseo, Renato, 2016. "Latent heterogeneity effects in modelling individual hazards: A non-proportional approach," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 89-93.
    9. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    10. Fazıl Paç, M. & Savin, Sergei & Velu, Chander, 2018. "When to adopt a service innovation: Nash equilibria in a competitive diffusion framework," European Journal of Operational Research, Elsevier, vol. 271(3), pages 968-984.
    11. Guidolin, Mariangela & Alpcan, Tansu, 2019. "Transition to sustainable energy generation in Australia: Interplay between coal, gas and renewables," Renewable Energy, Elsevier, vol. 139(C), pages 359-367.
    12. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    14. Teck-Hua Ho & Shan Li & So-Eun Park & Zuo-Jun Max Shen, 2012. "Customer Influence Value and Purchase Acceleration in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 236-256, March.
    15. Yogesh V. Joshi & David J. Reibstein & Z. John Zhang, 2009. "Optimal Entry Timing in Markets with Social Influence," Management Science, INFORMS, vol. 55(6), pages 926-939, June.
    16. Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
    17. Tolotti, Marco & Yepez, Jorge, 2020. "Hotelling-Bertrand duopoly competition under firm-specific network effects," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 105-128.
    18. Liao, Shuangqing & Seifert, Ralf W., 2015. "On the optimal frequency of multiple generation product introductions," European Journal of Operational Research, Elsevier, vol. 245(3), pages 805-814.
    19. Amir, Rabah & Machowska, Dominika & Troege, Michael, 2021. "Advertising patterns in a dynamic oligopolistic growing market with decay," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    20. Franses, Ph.H.B.F. & Hernández-Mireles, C., 2006. "When Should Nintendo Launch its Wii? Insights From a Bivariate Successive Generation Model," ERIM Report Series Research in Management ERS-2006-032-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1609-1636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.