IDEAS home Printed from https://ideas.repec.org/a/vrs/quageo/v40y2021i3p143-162n2.html
   My bibliography  Save this article

Soil Erosion Susceptibility Mapping of Imo River Basin Using Modified Geomorphometric Prioritisation Method

Author

Listed:
  • Nwilo Peter C.

    (Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria)

  • Ogbeta Caleb O.

    (Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria)

  • Daramola Olagoke E.

    (Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria)

  • Okolie Chukwuma J.

    (Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria)

  • Orji Michael J.

    (Department of Surveying and Geoinformatics, University of Lagos, Lagos, Nigeria)

Abstract

Gullies and other forms of erosion have been the greatest environmental problem and catastrophe in most high- and low-income countries. The challenge posed by soil erosion has compromised agricultural productivity, environmental biodiversity and food safety for the world's population. It is important to identify vulnerable areas to soil erosion in each region to initiate remedial measures. This study demonstrates the use of watershed morphometry coupled with weighted sum analysis (WSA) to estimate the soil erosion susceptibility of the Imo River Basin sub-watersheds (SWs) in South-Eastern Nigeria using satellite remote-sensing data and geographic information system (GIS) analysis. To this end, Shuttle Radar Topography Mission (SRTM), a Digital Elevation Model (DEM) with 30 m spatial resolution was used to extract and analyse 18 morphometric parameters including basic, linear, shape and relief. The method of receiver operating characteristics (ROC) curves was used to validate the model's prediction accuracy. This morphometry-based analysis resulted in the SWs being classified into zones of low, medium, high and very high erosion susceptibility. With regard to erosion susceptibility, 41.51% of the basin (2494.68 km2) is in the very high priority zone; while 10.50%, 44.33% and 3.66% of the basin are in the high, medium and low priority zones respectively. Validation of the final erosion susceptibility map showed a prediction accuracy of 81%. The use of satellite imagery and morphometric analysis in this study was cost- and time-effective for identifying areas susceptible to soil erosion.

Suggested Citation

  • Nwilo Peter C. & Ogbeta Caleb O. & Daramola Olagoke E. & Okolie Chukwuma J. & Orji Michael J., 2021. "Soil Erosion Susceptibility Mapping of Imo River Basin Using Modified Geomorphometric Prioritisation Method," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 143-162, September.
  • Handle: RePEc:vrs:quageo:v:40:y:2021:i:3:p:143-162:n:2
    DOI: 10.2478/quageo-2021-0029
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/quageo-2021-0029
    Download Restriction: no

    File URL: https://libkey.io/10.2478/quageo-2021-0029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sartori, Martina & Philippidis, George & Ferrari, Emanuele & Borrelli, Pasquale & Lugato, Emanuele & Montanarella, Luca & Panagos, Panos, 2019. "A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion," Land Use Policy, Elsevier, vol. 86(C), pages 299-312.
    2. Panos Panagos & Pasquale Borrelli & David Robinson, 0. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790.
    3. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    3. Panos Panagos & Pasquale Borrelli & David Robinson, 0. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790.
    4. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    5. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    6. Queiroz, Julia & Gasparinetti, Pedro & Bakker, Leonardo B. & Lobo, Felipe & Nagel, Gustavo, 2022. "Socioeconomic cost of dredge boat gold mining in the Tapajós basin, eastern Amazon," Resources Policy, Elsevier, vol. 79(C).
    7. Zheng, Haijin & Nie, Xiaofei & Liu, Zhao & Mo, Minghao & Song, Yuejun, 2021. "Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of Southern China," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    9. Ramos Scharrón, Carlos E., 2023. "On the hydro-geomorphology of steepland coffee farming: Runoff and surface erosion," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Qing Li & Yong Zhou & Li Wang & Qian Zuo & Siqi Yi & Jingyi Liu & Xueping Su & Tao Xu & Yan Jiang, 2021. "The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China," IJERPH, MDPI, vol. 18(21), pages 1-16, October.
    11. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    12. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    13. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    14. McCartney, Matthew & Rex, William & Yu, Winston & Uhlenbrook, Stefan & von Gnechten, Rachel, 2022. "Change in global freshwater storage," IWMI Reports 329159, International Water Management Institute.
    15. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    16. Amandine Valérie Pastor & Joao Pedro Nunes & Rossano Ciampalini & Haithem Bahri & Mohamed Annabi & Mohamed Chikhaoui & Armand Crabit & Stéphane Follain & Jan Jacob Keizer & Jérôme Latron & Feliciana L, 2022. "ScenaLand: a simple methodology for developing land use and management scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-29, December.
    17. A. S. Strokov & V. S. Krasilnikova & O. V. Cherkasova, 2022. "Economic Valuation of Recovery and Increased Efficiency in Agricultural Land Use," Studies on Russian Economic Development, Springer, vol. 33(4), pages 447-454, August.
    18. Clívia Dias Coelho & Demetrius David da Silva & Ricardo Santos Silva Amorim & Bruno Nery Fernandes Vasconcelos & Ernani Lopes Possato & Elpídio Inácio Fernandes Filho & Pedro Christo Brandão & José Am, 2024. "Development and Application of an Environmental Vulnerability Index (EVI) for Identifying Priority Restoration Areas in the São Francisco River Basin, Brazil," Land, MDPI, vol. 13(9), pages 1-20, September.
    19. Bunga Ludmila Rendrarpoetri & Ernan Rustiadi & Akhmad Fauzi & Andrea Emma Pravitasari, 2024. "Sustainability Assessment of the Upstream Bengawan Solo Watershed in Wonogiri Regency, Central Java Province, Indonesia," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    20. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:quageo:v:40:y:2021:i:3:p:143-162:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.