IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v33y2017i1p1-14n1.html
   My bibliography  Save this article

Unit Root Properties of Seasonal Adjustment and Related Filters: Special Cases

Author

Listed:
  • Bell William.R.

    (U.S. Census Bureau, Washington, DC 20233, United States of America)

Abstract

Bell (2012) catalogued unit root factors contained in linear filters used in seasonal adjustment (model-based or from the X-11 method) but noted that, for model-based seasonal adjustment, special cases could arise where filters could contain more unit root factors than was indicated by the general results. This article reviews some special cases that occur with canonical ARIMA model based adjustment in which, with some commonly used ARIMA models, the symmetric seasonal filters contain two extra nonseasonal differences (i.e., they include an extra (1 - B)(1 - F)). This increases by two the degree of polynomials in time that are annihilated by the seasonal filter and reproduced by the seasonal adjustment filter. Other results for canonical ARIMA adjustment that are reported in Bell (2012), including properties of the trend and irregular filters, and properties of the asymmetric and finite filters, are unaltered in these special cases. Special cases for seasonal adjustment with structural ARIMA component models are also briefly discussed.

Suggested Citation

  • Bell William.R., 2017. "Unit Root Properties of Seasonal Adjustment and Related Filters: Special Cases," Journal of Official Statistics, Sciendo, vol. 33(1), pages 1-14, March.
  • Handle: RePEc:vrs:offsta:v:33:y:2017:i:1:p:1-14:n:1
    DOI: 10.1515/jos-2017-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jos-2017-0001
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jos-2017-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521835954 is not listed on IDEAS
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    2. Proietti, Tommaso, 2005. "New algorithms for dating the business cycle," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 477-498, April.
    3. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Characterising the Business Cycle for Accession Countries," Working Papers 261, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. repec:ebl:ecbull:v:3:y:2008:i:60:p:1-9 is not listed on IDEAS
    5. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
    6. Olivier Darné & Amélie Charles, 2008. "The impact of outliers on transitory and permanent components in macroeconomic time series," Economics Bulletin, AccessEcon, vol. 3(60), pages 1-9.
    7. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    8. Bógalo, Juan & Llada, Martín & Poncela, Pilar & Senra, Eva, 2022. "Seasonality in COVID-19 times," Economics Letters, Elsevier, vol. 211(C).
    9. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    10. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    13. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    14. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    15. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    16. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    17. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    18. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    19. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    20. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    21. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:33:y:2017:i:1:p:1-14:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.