IDEAS home Printed from https://ideas.repec.org/a/vrs/enviro/v3y2015i4p57-65n7.html
   My bibliography  Save this article

Short-term forecasting of the chloride content in the mineral waters of the Ustroń Health Resort using SARIMA and Holt-Winters models

Author

Listed:
  • Dąbrowska Dominika

    (Department of Hydrogeology and Engineering Geology, Faculty of Earth Sciences, University of Silesia, 41-200 Sosnowiec, Będzińska Str. 60, Poland)

  • Sołtysiak Marek

    (Department of Hydrogeology and Engineering Geology, Faculty of Earth Sciences, University of Silesia, 41-200 Sosnowiec, Będzińska Str. 60, Poland)

  • Waligóra Jan

    (Health Resort Ustroń, Ustroń, Sanatoryjna Str. 1, Poland)

Abstract

The Ustroń S.A. Health Resort (southern Poland) uses iodide-bromide mineral waters taken from Middle and Upper Devonian limestones and dolomites with a mineralisation range of 110-130 g/dm3 for curative purposes. Two boreholes - U-3 and U3-A drilled in the early 1970s were exploited. The aim of this paper is to estimate changes in mineral water quality of the Ustroń Health Resort by taking into consideration chloride content in the water from the U-3 borehole. The data has included the results of monthly analyses of chlorides from 2005 to 2015 during the tests carried out by the Mining Department of the Health Resort. The triple exponential smoothing (ETS) function and the Seasonal Autoregressive Integrated Moving Average (SARIMA) method of modelling time series were used for the calculations. The ability to properly forecast mineral water quality can result in a good status of the exploitation borehole and a limited number of failures in the exploitation system. Because of the good management of health resorts, it is possible to acquire more satisfied customers. The main goal of the article involves the real-time forecast accuracy, obtained results show that the proposed methods are effective for such situations. Presented methods made it possible to obtain a 24-month point and interval forecast. The results of these analyses indicate that the chloride content is forecast to be in the range of 72 to 83 g/l from 2015 to 2017. While comparing the two methods of analysis, a narrower range of forecast values and, therefore, greater accuracy were obtained for the ETS function. The good performance of the ETS model highlights its utility compared with complicated physically based numerical models.

Suggested Citation

  • Dąbrowska Dominika & Sołtysiak Marek & Waligóra Jan, 2015. "Short-term forecasting of the chloride content in the mineral waters of the Ustroń Health Resort using SARIMA and Holt-Winters models," Environmental & Socio-economic Studies, Sciendo, vol. 3(4), pages 57-65, December.
  • Handle: RePEc:vrs:enviro:v:3:y:2015:i:4:p:57-65:n:7
    DOI: 10.1515/environ-2015-0074
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/environ-2015-0074
    Download Restriction: no

    File URL: https://libkey.io/10.1515/environ-2015-0074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniya Tlegenova, 2015. "Forecasting Exchange Rates Using Time Series Analysis: The sample of the currency of Kazakhstan," Papers 1508.07534, arXiv.org.
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    4. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    5. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    6. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    7. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    8. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    9. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    10. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    11. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    13. Dilaver, Zafer & Hunt, Lester C., 2011. "Turkish aggregate electricity demand: An outlook to 2020," Energy, Elsevier, vol. 36(11), pages 6686-6696.
    14. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    15. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    16. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    17. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    18. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    19. Luzia, Ruan & Rubio, Lihki & Velasquez, Carlos E., 2023. "Sensitivity analysis for forecasting Brazilian electricity demand using artificial neural networks and hybrid models based on Autoregressive Integrated Moving Average," Energy, Elsevier, vol. 274(C).
    20. Sozen, Adnan & Gulseven, Zafer & Arcaklioglu, Erol, 2007. "Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies," Energy Policy, Elsevier, vol. 35(12), pages 6491-6505, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:enviro:v:3:y:2015:i:4:p:57-65:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.