IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v45y2015i4p647-668.html
   My bibliography  Save this article

Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory

Author

Listed:
  • Yong Ma
  • Zhengjun Zhang
  • Weiguo Zhang
  • Weidong Xu

Abstract

Credit risk management is important for the investors in practical risk management. This paper aims to discuss how to evaluate the default risk of bond portfolios by applying extreme value theory. Based on Black and Cox default approach, we propose a novel threshold default model and use extreme value theory to derive the distribution functions of the state variables. To some extent, our model can be regarded as the counterpart of CreditMetrics, which is based on Merton approach. According to multivariate extreme value theory, extreme value copula is applicable to build the dependence between the state variables; on the other hand, it is more probable that default clustering occurs in the same region or sector in reality. Taking these into account, we adopt hierarchical Gumbel copulas, which are tail-dependent extreme value copulas and can group the bonds by regions or sectors, to link the state variables. An empirical bond portfolio is used to illustrate the model. The results show that, compared with CreditMetrics and the simple Gumbel copula model, the extremal tail of the distribution of loss from default in the proposed model is heavier. Consequently, the proposed model seems relatively conservative in terms of stress testing. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Yong Ma & Zhengjun Zhang & Weiguo Zhang & Weidong Xu, 2015. "Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 647-668, April.
  • Handle: RePEc:kap:compec:v:45:y:2015:i:4:p:647-668
    DOI: 10.1007/s10614-014-9440-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-014-9440-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-014-9440-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    2. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    3. Zhang, Zhengjun & Shinki, Kazuhiko, 2007. "Extreme co-movements and extreme impacts in high frequency data in finance," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1399-1415, May.
    4. Vandewalle, B. & Beirlant, J., 2006. "On univariate extreme value statistics and the estimation of reinsurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 441-459, June.
    5. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    6. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    9. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    10. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    11. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    12. Puzanova, Natalia, 2011. "A hierarchical Archimedean copula for portfolio credit risk modelling," Discussion Paper Series 2: Banking and Financial Studies 2011,14, Deutsche Bundesbank.
    13. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    14. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    15. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    16. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puneet Pasricha & Dharmaraja Selvamuthu & Guglielmo D’Amico & Raimondo Manca, 2020. "Portfolio optimization of credit risky bonds: a semi-Markov process approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    2. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. Pawel Siarka, 2012. "Implementation of the Stress Test Methods in the Retail Portfolio," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 2(6), pages 1-2.
    5. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    6. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    8. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    9. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    10. Ephraim Clark & Geeta Lakshmi, 2003. "Controlling the risk: a case study of the Indian liquidity crisis 1990-92," Journal of International Development, John Wiley & Sons, Ltd., vol. 15(3), pages 285-298.
    11. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    12. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    13. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, July.
    14. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    15. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
    16. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    17. Reza Kazemi & Ali Mosleh, 2012. "Improving Default Risk Prediction Using Bayesian Model Uncertainty Techniques," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1888-1900, November.
    18. Davide Ferrari & Sandra Paterlini, 2009. "The Maximum Lq-Likelihood Method: An Application to Extreme Quantile Estimation in Finance," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 3-19, March.
    19. Andreas Muhlbacher & Thomas Guhr, 2017. "Extreme portfolio loss correlations in credit risk," Papers 1706.09809, arXiv.org.
    20. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:45:y:2015:i:4:p:647-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.