IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v11y2023i1p16n1.html
   My bibliography  Save this article

When copulas and smoothing met: An interview with Irène Gijbels

Author

Listed:
  • Genest Christian

    (Department of Mathematics and Statistics, McGill University, Montréal (Québec), Canada)

  • Scherer Matthias

    (Department of Mathematics, Lehrstuhl für Finanzmathematik, Technische Universität München, Garching, Germany)

Abstract

No abstract is available for this item.

Suggested Citation

  • Genest Christian & Scherer Matthias, 2023. "When copulas and smoothing met: An interview with Irène Gijbels," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-16, January.
  • Handle: RePEc:vrs:demode:v:11:y:2023:i:1:p:16:n:1
    DOI: 10.1515/demo-2022-0154
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0154
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gijbels, Irène & Herrmann, Klaus, 2014. "On the distribution of sums of random variables with copula-induced dependence," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 27-44.
    2. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    3. Christian Genest & Johanna G. Nešlehová, 2020. "A Conversation With Paul Embrechts," International Statistical Review, International Statistical Institute, vol. 88(3), pages 521-547, December.
    4. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2019. "Extremiles: A New Perspective on Asymmetric Least Squares," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1366-1381, July.
    5. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    6. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Irene Gijbels & Peter Hall & Aloïs Kneip, 1999. "On the Estimation of Jump Points in Smooth Curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(2), pages 231-251, June.
    8. Noël Veraverbeke & Irène Gijbels & Marek Omelka, 2014. "Preadjusted non-parametric estimation of a conditional distribution function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 399-438, March.
    9. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    10. Irène Gijbels & Klaus Herrmann, 2018. "Optimal Expected-Shortfall Portfolio Selection with Copula-Induced Dependence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 66-106, January.
    11. Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2019. "On Quantile‐based Asymmetric Family of Distributions: Properties and Inference," International Statistical Review, International Statistical Institute, vol. 87(3), pages 471-504, December.
    12. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    13. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    14. Abegaz, Fentaw & Gijbels, Irène & Veraverbeke, Noël, 2012. "Semiparametric estimation of conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 43-73.
    15. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    2. Irène Gijbels & Marek Omelka & Noël Veraverbeke, 2015. "Estimation of a Copula when a Covariate Affects only Marginal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1109-1126, December.
    3. Djaloud, Toihir Soulaimana & Seck, Cheikh Tidiane, 2024. "Nonparametric kernel estimation of conditional copula density," Statistics & Probability Letters, Elsevier, vol. 212(C).
    4. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    5. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    6. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    7. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    8. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    9. Jean-François Plante, 2017. "Rank correlation under categorical confounding," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    10. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    11. Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
    12. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    13. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    14. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    15. Mainik, Georg, 2015. "Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 197-216.
    16. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    17. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    18. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    19. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    20. Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:11:y:2023:i:1:p:16:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.