IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1135-d1372983.html
   My bibliography  Save this article

Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves

Author

Listed:
  • Lu Lu

    (Departement of Statistics, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

  • Sujit Ghosh

    (Departement of Statistics, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

Abstract

Conditional copulas are useful tools for modeling the dependence between multiple response variables that may vary with a given set of predictor variables. Conditional dependence measures such as conditional Kendall’s tau and Spearman’s rho that can be expressed as functionals of the conditional copula are often used to evaluate the strength of dependence conditioning on the covariates. In general, semiparametric estimation methods of conditional copulas rely on an assumed parametric copula family where the copula parameter is assumed to be a function of the covariates. The functional relationship can be estimated nonparametrically using different techniques, but it is required to choose an appropriate copula model from various candidate families. In this paper, by employing the empirical checkerboard Bernstein copula (ECBC) estimator, we propose a fully nonparametric approach for estimating conditional copulas, which does not require any selection of parametric copula models. Closed-form estimates of the conditional dependence measures are derived directly from the proposed ECBC-based conditional copula estimator. We provide the large-sample consistency of the proposed estimator as well as the estimates of conditional dependence measures. The finite-sample performance of the proposed estimator and comparison with semiparametric methods are investigated through simulation studies. An application to real case studies is also provided.

Suggested Citation

  • Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1135-:d:1372983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    2. Elif F. Acar & Radu V. Craiu & Fang Yao, 2011. "Dependence Calibration in Conditional Copulas: A Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(2), pages 445-453, June.
    3. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," LIDAM Reprints ISBA 2017005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    5. L. Wasserman, 2000. "Asymptotic inference for mixture models by using data‐dependent priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 159-180.
    6. Vatter, Thibault & Chavez-Demoulin, Valérie, 2015. "Generalized additive models for conditional dependence structures," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 147-167.
    7. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    8. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    10. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.
    11. Luciana Dalla Valle & Fabrizio Leisen & Luca Rossini, 2018. "Bayesian non‐parametric conditional copula estimation of twin data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 523-548, April.
    12. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    13. Levi, Evgeny & Craiu, Radu V., 2018. "Bayesian inference for conditional copulas using Gaussian Process single index models," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 115-134.
    14. Lu Lu & Sujit Ghosh, 2023. "Nonparametric Estimation of Multivariate Copula Using Empirical Bayes Methods," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    15. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    2. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    3. Levi, Evgeny & Craiu, Radu V., 2018. "Bayesian inference for conditional copulas using Gaussian Process single index models," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 115-134.
    4. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    5. Jean-David Fermanian & Olivier Lopez, 2015. "Single-index copulae," Working Papers 2015-12, Center for Research in Economics and Statistics.
    6. Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
    7. Alexis Derumigny & Jean-David Fermanian, 2018. "About Kendall's regression," Working Papers 2018-01, Center for Research in Economics and Statistics.
    8. Derumigny, Alexis & Fermanian, Jean-David, 2019. "A classification point-of-view about conditional Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 70-94.
    9. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    10. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.
    11. Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
    12. Gijbels Irène & Matterne Margot, 2021. "Study of partial and average conditional Kendall’s tau," Dependence Modeling, De Gruyter, vol. 9(1), pages 82-120, January.
    13. Acar, Elif F. & Czado, Claudia & Lysy, Martin, 2019. "Flexible dynamic vine copula models for multivariate time series data," Econometrics and Statistics, Elsevier, vol. 12(C), pages 181-197.
    14. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    15. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    16. Atskanov, Isuf, 2015. "Dynamic optimization of an investment portfolio on European stock markets using pair copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 40(4), pages 84-105.
    17. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    18. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    19. EnDer Su, 2018. "Measuring contagion risk in high volatility state among Taiwanese major banks," Risk Management, Palgrave Macmillan, vol. 20(3), pages 185-241, August.
    20. Abegaz, Fentaw & Gijbels, Irène & Veraverbeke, Noël, 2012. "Semiparametric estimation of conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 43-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1135-:d:1372983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.