IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v59y2014icp27-44.html
   My bibliography  Save this article

On the distribution of sums of random variables with copula-induced dependence

Author

Listed:
  • Gijbels, Irène
  • Herrmann, Klaus

Abstract

We investigate distributional properties of the sum of d possibly unbounded random variables. The joint distribution of the random vector is formulated by means of an absolutely continuous copula, allowing for a variety of different dependence structures between the summands. The obtained expression for the distribution of the sum features a separation property into marginal and dependence structure contributions typical for copula approaches. Along the same lines we obtain the formulation of a conditional expectation closely related to the expected shortfall common in actuarial and financial literature. We further exploit the separation to introduce new numerical algorithms to compute the distribution and quantile function, as well as this conditional expectation. A comparison with the most common competitors shows that the discussed Path Integration algorithm is the most suitable method for computing these quantities. In our example, we apply the theory to compute Value-at-Risk forecasts for a trivariate portfolio of index returns.

Suggested Citation

  • Gijbels, Irène & Herrmann, Klaus, 2014. "On the distribution of sums of random variables with copula-induced dependence," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 27-44.
  • Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:27-44
    DOI: 10.1016/j.insmatheco.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hafner, Christian M. & Reznikova, Olga, 2010. "Efficient estimation of a semiparametric dynamic copula model," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2609-2627, November.
    2. Christian Meyer, 2009. "The Bivariate Normal Copula," Papers 0912.2816, arXiv.org.
    3. Filippo Domma & Sabrina Giordano, 2012. "A stress–strength model with dependent variables to measure household financial fragility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 375-389, August.
    4. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "On the distribution of the (un)bounded sum of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 56-63, January.
    5. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    6. Embrechts, Paul & Hoing, Andrea & Puccetti, Giovanni, 2005. "Worst VaR scenarios," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 115-134, August.
    7. Huang, Jen-Jsung & Lee, Kuo-Jung & Liang, Hueimei & Lin, Wei-Fu, 2009. "Estimating value at risk of portfolio by conditional copula-GARCH method," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 315-324, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genest Christian & Scherer Matthias, 2023. "When copulas and smoothing met: An interview with Irène Gijbels," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-16, January.
    2. Montes, Ignacio & Salamanca, Juan Jesús & Montes, Susana, 2020. "A modified version of stochastic dominance involving dependence," Statistics & Probability Letters, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    2. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    3. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    4. A. James & N. Chandra & Nicy Sebastian, 2023. "Stress-strength reliability estimation for bivariate copula function with rayleigh marginals," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 196-215, March.
    5. Fabrizio Durante & Roberto Ghiselli-Ricci, 2012. "Supermigrative copulas and positive dependence," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 327-342, July.
    6. Marius Lux & Wolfgang Karl Hardle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Papers 2009.06910, arXiv.org.
    7. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    8. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    9. Shim Jeungbo & Lee Seung-Hwan, 2017. "Dependency between Risks and the Insurer’s Economic Capital: A Copula-based GARCH Model," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 11(1), pages 1-29, January.
    10. repec:kan:wpaper:202105 is not listed on IDEAS
    11. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    12. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    13. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    14. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    15. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    16. Lei Hou & Wei Long & Qi Li, 2019. "Comovement of Home Prices: A Conditional Copula Approach," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 297-318, May.
    17. Genest, Christian & Gerber, Hans U. & Goovaerts, Marc J. & Laeven, Roger J.A., 2009. "Editorial to the special issue on modeling and measurement of multivariate risk in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 143-145, April.
    18. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    19. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    20. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    21. Yu, Xing & Zhang, Wei Guo & Liu, Yong Jun & Wang, Xinxin & Wang, Chao, 2020. "Hedging the exchange rate risk for international portfolios," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 173(C), pages 85-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:27-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.