IDEAS home Printed from https://ideas.repec.org/a/ucp/epolec/doi10.1086-717219.html
   My bibliography  Save this article

Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities

Author

Listed:
  • James Archsmith
  • Erich Muehlegger
  • David S. Rapson

Abstract

This paper identifies and quantifies major determinants of future electric vehicle demand to inform widely held aspirations for market growth. Our model compares three channels that will affect electric vehicle market share in the United States from 2020 to 2035: intrinsic (no-subsidy) electric vehicle demand growth, net-of-subsidy electric vehicle cost declines (e.g., batteries), and government subsidies. Geographic variation in preferences for sedans and light trucks highlights the importance of viable electric vehicle alternatives to conventional light trucks; belief in climate change is highly correlated with electric vehicle adoption patterns; and the first $500 billion in cumulative nationwide electric vehicle subsidies is associated a 7%–10% increase in electric vehicle market share in 2035, an effect that diminishes as subsidies increase. The rate of intrinsic demand growth dwarfs the impact of demand-side subsidies and battery cost declines, highlighting the importance of nonmonetary factors (e.g., charging infrastructure, product quality, and/or cultural acceptance) on electric vehicle demand.

Suggested Citation

  • James Archsmith & Erich Muehlegger & David S. Rapson, 2022. "Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 71-110.
  • Handle: RePEc:ucp:epolec:doi:10.1086/717219
    DOI: 10.1086/717219
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/717219
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: http://dx.doi.org/10.1086/717219
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/717219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2020. "Electrification of light-duty vehicle fleet alone will not meet mitigation targets," Nature Climate Change, Nature, vol. 10(12), pages 1102-1107, December.
    2. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    3. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    4. Severin Borenstein & Lucas W. Davis, 2016. "The Distributional Effects of US Clean Energy Tax Credits," Tax Policy and the Economy, University of Chicago Press, vol. 30(1), pages 191-234.
    5. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    6. Goldberg, Pinelopi Koujianou, 1995. "Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry," Econometrica, Econometric Society, vol. 63(4), pages 891-951, July.
    7. Peter D. Howe & Matto Mildenberger & Jennifer R. Marlon & Anthony Leiserowitz, 2015. "Geographic variation in opinions on climate change at state and local scales in the USA," Nature Climate Change, Nature, vol. 5(6), pages 596-603, June.
    8. Judith Chevalier & Austan Goolsbee, 2009. "Are Durable Goods Consumers Forward-Looking? Evidence from College Textbooks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1853-1884.
    9. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    10. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Epstein, Lucas & Muehlegger, Erich, 2024. "Ideology, Incidence and the Political Economy of Fuel Taxes: Evidence from California 2018 Proposition 6," Institute of Transportation Studies, Working Paper Series qt6k58771s, Institute of Transportation Studies, UC Davis.
    2. David Rapson & Erich Muehlegger, 2023. "Global Transportation Decarbonization," Journal of Economic Perspectives, American Economic Association, vol. 37(3), pages 163-188, Summer.
    3. Nico Brinkel & Thijs Wijk & Anoeska Buijze & Nanda Kishor Panda & Jelle Meersmans & Peter Markotić & Bart Ree & Henk Fidder & Baerte Brey & Simon Tindemans & Tarek AlSkaif & Wilfried Sark, 2024. "Enhancing smart charging in electric vehicles by addressing paused and delayed charging problems," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Kristoffersson, Ida & Pyddoke, Roger & Kristofersson, Filip & Algers, Staffan, 2024. "Access to charging infrastructure and the propensity to buy an electric car," Working Papers 2024:4, Swedish National Road & Transport Research Institute (VTI).
    5. Muehlegger, Erich & Rapson, David S., 2022. "Subsidizing low- and middle-income adoption of electric vehicles: Quasi-experimental evidence from California," Journal of Public Economics, Elsevier, vol. 216(C).
    6. Andri Ottesen & Sumayya Banna & Basil Alzougool, 2022. "Attitudes of Drivers towards Electric Vehicles in Kuwait," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    7. David S. Rapson & James B. Bushnell, 2022. "The Electric Ceiling: Limits and Costs of Full Electrification," NBER Working Papers 30593, National Bureau of Economic Research, Inc.
    8. Gøril L. Andreassen & Jo Thori Lind, 2024. "Climate, Technology and Value: Insights from the First Decade with Mass-Consumption of Electric Vehicles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(7), pages 1783-1844, July.
    9. Halse, Askill H. & Hauge, Karen E. & Isaksen, Elisabeth T. & Johansen, Bjørn G. & Rauum, Oddbjørn, 2022. "Local Incentives and Electric Vehicle Adoption," Memorandum 1/2022, Oslo University, Department of Economics.
    10. David Austin, 2023. "Modeling the Demand for Electric Vehicles and the Supply of Charging Stations in the United States: Working Paper 2023-06," Working Papers 58964, Congressional Budget Office.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    2. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    3. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    4. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    5. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).
    6. Stephen P. Holland & Erin T. Mansur & Andrew J. Yates, 2021. "The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 316-344, August.
    7. Jianwei Xing & Benjamin Leard & Shanjun Li, 2019. "What Does an Electric Vehicle Replace?," NBER Working Papers 25771, National Bureau of Economic Research, Inc.
    8. Lohawala, Nafisa, 2023. "Roadblock or Accelerator? The Effect of Electric Vehicle Subsidy Elimination," RFF Working Paper Series 23-13, Resources for the Future.
    9. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "The Environmental Benefits from Transportation Electrification: Urban Buses," NBER Working Papers 27285, National Bureau of Economic Research, Inc.
    10. Burlig, Fiona PhD & Bushnell, James PhD & Rapson, David PhD & Wolfram, Catherine PhD, 2020. "Supercharged? Electricity Demand and the Electrification of Transportation in California," Institute of Transportation Studies, Working Paper Series qt9t62s2sd, Institute of Transportation Studies, UC Davis.
    11. Zunian Luo, 2022. "Cap or No Cap? What Can Governments Do to Promote EV Sales?," Papers 2212.08137, arXiv.org.
    12. Hayashida, Sherilyn & La Croix, Sumner & Coffman, Makena, 2021. "Understanding changes in electric vehicle policies in the U.S. states, 2010–2018," Transport Policy, Elsevier, vol. 103(C), pages 211-223.
    13. Nathan Delacrétaz & Bruno Lanz & Jeremy van Dijk, 2020. "The chicken or the egg: Technology adoption and network infrastructure in the market for electric vehicles," IRENE Working Papers 20-08, IRENE Institute of Economic Research.
    14. Shanjun Li & Xianglei Zhu & Yiding Ma & Fan Zhang & Hui Zhou, 2022. "The Role of Government in the Market for Electric Vehicles: Evidence from China," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(2), pages 450-485, March.
    15. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    16. Fournel, Jean-François, 2023. "Electric Vehicle Subsidies: Cost-Effectiveness and Emission Reductions," TSE Working Papers 23-1465, Toulouse School of Economics (TSE).
    17. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    18. Patrick Bigler & Doina Maria Radulescu, 2022. "Environmental, Redistributive and Revenue Effects of Policies Promoting Fuel Efficient and Electric Vehicles," CESifo Working Paper Series 9645, CESifo.
    19. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    20. Sheldon, Tamara L. & Dua, Rubal, 2024. "The dynamic role of subsidies in promoting global electric vehicle sales," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).

    More about this item

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:epolec:doi:10.1086/717219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/EEPE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.