IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/31513.html
   My bibliography  Save this paper

Global Transportation Decarbonization

Author

Listed:
  • David S. Rapson
  • Erich Muehlegger

Abstract

A number of policy proposals call for replacing fossil fuels in the name of decarbonization, but these fuels will be difficult to replace due to to their as-yet unrivaled bundle of attributes: abundance, ubiquity, energy density, transportability and cost. There is a growing commitment to electrification as the dominant decarbonization pathway for transportation. While deep electrification is promising for road vehicles in wealthy countries, it will face steep obstacles. In other sectors and in the developing world, it’s not even in pole position. Global transportation decarbonization will require decoupling emissions from economic growth, and decoupling emissions from growth will require not only new technologies, but cooperation in governance. The menu of policy options is replete with tradeoffs, particularly as the primacy of energy security and reliability (over emissions abatement) has once again been demonstrated in Europe and elsewhere.

Suggested Citation

  • David S. Rapson & Erich Muehlegger, 2023. "Global Transportation Decarbonization," NBER Working Papers 31513, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:31513
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w31513.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    2. Taryn Dinkelman, 2011. "The Effects of Rural Electrification on Employment: New Evidence from South Africa," American Economic Review, American Economic Association, vol. 101(7), pages 3078-3108, December.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Monica Das Gupta, 2014. "Population, Poverty, and Climate Change," The World Bank Research Observer, World Bank, vol. 29(1), pages 83-108.
    5. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    6. Lucas W. Davis & Catherine Hausman & Nancy L. Rose, 2023. "Transmission Impossible? Prospects for Decarbonizing the US Grid," Journal of Economic Perspectives, American Economic Association, vol. 37(4), pages 155-180, Fall.
    7. Kenneth Lee & Edward Miguel & Catherine Wolfram, 2016. "Appliance Ownership and Aspirations among Electric Grid and Home Solar Households in Rural Kenya," American Economic Review, American Economic Association, vol. 106(5), pages 89-94, May.
    8. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    9. Lee, Kenneth & Miguel, Edward & Wolfram, Catherine, 2016. "Appliance Ownership and Aspirations among Electric Grid and Home Solar Households in Rural Kenya," Department of Economics, Working Paper Series qt1zv1p589, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    10. James Archsmith & Erich Muehlegger & David S. Rapson, 2022. "Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 71-110.
    11. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    12. Christopher R. Knittel, 2011. "Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector," American Economic Review, American Economic Association, vol. 101(7), pages 3368-3399, December.
    13. Chan, Gabriel & Stavins, Robert & Stowe, Robert & Sweeney, Richard, 2012. "The so2 Allowance-Trading System and the Clean Air Act Amendments of 1990: Reflections on 20 Years of Policy Innovation," National Tax Journal, National Tax Association;National Tax Journal, vol. 65(2), pages 419-452, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Burgess & Michael Greenstone & Nicholas Ryan & Anant Sudarshan, 2020. "Demand for Electricity on the Global Electrification Frontier," Cowles Foundation Discussion Papers 2222, Cowles Foundation for Research in Economics, Yale University.
    2. Richmond, Jennifer & Urpelainen, Johannes, 2019. "Electrification and appliance ownership over time: Evidence from rural India," Energy Policy, Elsevier, vol. 133(C).
    3. Sievert, Maximiliane & Steinbuks, Jevgenijs, 2020. "Willingness to pay for electricity access in extreme poverty: Evidence from sub-Saharan Africa," World Development, Elsevier, vol. 128(C).
    4. Blimpo, Moussa P. & Postepska, Agnieszka & Xu, Yanbin, 2020. "Why is household electricity uptake low in Sub-Saharan Africa?," World Development, Elsevier, vol. 133(C).
    5. Kenneth Lee & Edward Miguel & Catherine Wolfram, 2020. "Does Household Electrification Supercharge Economic Development?," Journal of Economic Perspectives, American Economic Association, vol. 34(1), pages 122-144, Winter.
    6. Kenneth Lee & Edward Miguel & Catherine Wolfram, 2016. "Experimental Evidence on the Demand for and Costs of Rural Electrification," NBER Working Papers 22292, National Bureau of Economic Research, Inc.
    7. Barron, Manuel & Torero, Maximo, 2017. "Household electrification and indoor air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 81-92.
    8. Meriggi, Niccolò F. & Bulte, Erwin & Mobarak, Ahmed Mushfiq, 2021. "Subsidies for technology adoption: Experimental evidence from rural Cameroon," Journal of Development Economics, Elsevier, vol. 153(C).
    9. Ding, Haoyuan & Qin, Cong & Shi, Kang, 2018. "Development through electrification: Evidence from rural China," China Economic Review, Elsevier, vol. 50(C), pages 313-328.
    10. Bharadwaj, Bishal & Subedi, Mukti Nath & Malakar, Yuwan & Ashworth, Peta, 2023. "Low-capacity decentralized electricity systems limit the adoption of electronic appliances in rural Nepal," Energy Policy, Elsevier, vol. 177(C).
    11. Siqi Zheng & Matthew E. Kahn, 2013. "Understanding China's Urban Pollution Dynamics," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 731-772, September.
    12. Miguel, Edward & Wolfram, Catherine & Lee, Kenneth, 2016. "Experimental Evidence on the Demand for and Costs of Rural Electrification," Department of Economics, Working Paper Series qt1s55t761, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    13. Thomas, Daniel Robert & Harish, S.P. & Kennedy, Ryan & Urpelainen, Johannes, 2020. "The effects of rural electrification in India: An instrumental variable approach at the household level," Journal of Development Economics, Elsevier, vol. 146(C).
    14. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    15. Martinsson, Gustav & Sajtos, László & Strömberg, Per & Thomann, Christian, 2022. "Carbon Pricing and Firm-Level CO2 Abatement: Evidence from a Quarter of a Century-Long Panel," Misum Working Paper Series 2022-10, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    16. Francesco Tonini & Francesco Davide Sanvito & Fabrizio Colombelli & Emanuela Colombo, 2022. "Improving Sustainable Access to Electricity in Rural Tanzania: A System Dynamics Approach to the Matembwe Village," Energies, MDPI, vol. 15(5), pages 1-17, March.
    17. Klier, Thomas & Linn, Joshua, 2013. "Technological Change, Vehicle Characteristics, and the Opportunity Costs of Fuel Economy Standards," RFF Working Paper Series dp-13-40, Resources for the Future.
    18. Rains, Emily & Abraham, Ronald J., 2018. "Rethinking barriers to electrification: Does government collection failure stunt public service provision?," Energy Policy, Elsevier, vol. 114(C), pages 288-300.
    19. Díaz Antonia & Puch Luis A., 2019. "Investment, technological progress and energy efficiency," The B.E. Journal of Macroeconomics, De Gruyter, vol. 19(2), pages 1-28, June.
    20. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:31513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.