IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v53y2016i4d10.1007_s12597-016-0255-8.html
   My bibliography  Save this article

Fuzzy analytic hierarchy process to a structure under 2-out-of-3:F modeling

Author

Listed:
  • Ritu Chandna

    (Graphic Era University)

  • Mangey Ram

    (Graphic Era University)

Abstract

The lack of consistency in reliability modeling under human failure can lead to inconsistent conclusions. However, fuzzy logic allows an address to the ambiguity in reliability modeling. The Analytic Hierarchy Process (AHP) is one of the comprehensively used multi-criteria decision making methods. This paper reveals the application of fuzzy AHP in a structure consisting of a 2-out-of-3:F substructure under human failure. In reliability engineering, failure is a major concern for system design, planning and operations and it is imperative to focus more on system failures. The novelty of this paper is that the major failure rates of the system are selected and the weight of each failure rate is calculated after constructing a pair wise comparison matrix. The fuzzy reliability index is then evaluated with the help of the linguistic variables considered by experts in the form of performance ratings of different reliability indexes, and then the reliability is measured using multi-criteria decision making technique. The contribution of the paper is the ranking of failure rates which shows the relative importance of each failure rate and how it affects the overall system reliability to decide on a desirable action plan.

Suggested Citation

  • Ritu Chandna & Mangey Ram, 2016. "Fuzzy analytic hierarchy process to a structure under 2-out-of-3:F modeling," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 693-704, December.
  • Handle: RePEc:spr:opsear:v:53:y:2016:i:4:d:10.1007_s12597-016-0255-8
    DOI: 10.1007/s12597-016-0255-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-016-0255-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-016-0255-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajit Kumar Verma & Ajit Srividya & Durga Rao Karanki, 2010. "Reliability and Safety Engineering," Springer Series in Reliability Engineering, Springer, number 978-1-84996-232-2, June.
    2. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    3. Mangey Ram & S.B. Singh, 2010. "Analysis of a complex system with common cause failure and two types of repair facilities with different distributions in failure," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 4(4), pages 381-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parveen Sharma & Sandeep Singhal, 2017. "Analysis of facility layout alternatives using proposed integrated approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(1), pages 1-20, March.
    2. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    2. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    4. Cristina Johansson & Johan Ölvander & Micael Derelöv, 2018. "Multi-objective optimization for safety and reliability trade-off: Optimization and results processing," Journal of Risk and Reliability, , vol. 232(6), pages 661-676, December.
    5. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    6. Zhengyuan Zhai & Lei Zhang & Xiaochao Hou, 2023. "Measurement and Promotion Strategy of China’s Power System Regulation Capacity," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    7. Afzali, Peyman & Keynia, Farshid & Rashidinejad, Masoud, 2019. "A new model for reliability-centered maintenance prioritisation of distribution feeders," Energy, Elsevier, vol. 171(C), pages 701-709.
    8. Oleg Gubarevych & Stanisław Duer & Inna Melkonova & Marek Woźniak & Jacek Paś & Marek Stawowy & Krzysztof Rokosz & Konrad Zajkowski & Dariusz Bernatowicz, 2023. "Research on and Assessment of the Reliability of Railway Transport Systems with Induction Motors," Energies, MDPI, vol. 16(19), pages 1-21, September.
    9. Marek Stawowy & Adam Rosiński & Jacek Paś & Tomasz Klimczak, 2021. "Method of Estimating Uncertainty as a Way to Evaluate Continuity Quality of Power Supply in Hospital Devices," Energies, MDPI, vol. 14(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:53:y:2016:i:4:d:10.1007_s12597-016-0255-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.